A New Intrusion Detection Method Based on Machine Learning in Mobile Ad Hoc NETwork

Article Preview

Abstract:

In a Mobile Ad hoc NETwork (MANET), intrusion detection is of significant importance in many applications in detecting malicious or unexpected intruder (s). The intruder can be an enemy in a battlefield, or a malicious moving object in the area of interest. Unfortunately, many anomaly intrusion detection systems (IDS) take on higher false alarm rate (FAR) and false negative rate (FNR). In this paper, we propose and implement a new intrusion-detection system using Adaboost, a prevailing machine learning algorithm, and its detecting model adopts a dynamic load-balancing algorithm, which can avoid packet loss and false negatives in high-performance severs with handling heavy traffic loads in real-time and can enhance the efficiency of detecting work. Compared to contemporary approaches, our system demonstrates an especially low false positive rate and false negative rate in certain circumstances while does not greatly affect the network performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1304-1310

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Elhadi M. Shakshuki, Nan Kang, Tarek R. Sheltami, EAACK—A Secure Intrusion-Detection System for MANETs, IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS. vol. 60, no. 3, MARCH (2013).

DOI: 10.1109/tie.2012.2196010

Google Scholar

[2] K. Kuladinith, A. S. Timm-Giel, and C. Görg, Mobile ad-hoc communications in AEC industry, J. Inf. Technol. Const., vol. 9, p.313–323, (2004).

Google Scholar

[3] K. Stanoevska-Slabeva and M. Heitmann, Impact of mobile ad-hoc networks on the mobile value system, in Proc. 2nd Conf. m-Bus., Vienna, Austria, Jun. (2003).

Google Scholar

[4] J.N. Al-Karaki and A.E. Kamal, Routing Techniques in Wireless Sensor Networks: A Survey, IEEE Wireless Comm., vol. 11, no. 6, pp.6-28, Dec. (2004).

DOI: 10.1109/mwc.2004.1368893

Google Scholar

[5] S. Tilak, N.B. Abu-Ghazaleh, and W. Heinzelman, A Taxonomy of Wireless Micro-Sensor Network Models, ACM Mobile Computing and Comm. Rev., vol. 6, no. 2, pp.28-36, Apr. (2002).

DOI: 10.1145/565702.565708

Google Scholar

[6] L. Buttyan and J. P. Hubaux, Security and Cooperation in Wireless Networks. Cambridge, U.K.: Cambridge Univ. Press, Aug. (2007).

Google Scholar

[7] K. Al Agha, M. -H. Bertin, T. Dang, A. Guitton, P. Minet, T. Val, and J. -B. Viollet, Which wireless technology for industrial wireless sensor networks? The development of OCARI technol, IEEE Trans. Ind. Electron., vol. 56, no. 10, p.4266–4278, Oct. (2009).

DOI: 10.1109/tie.2009.2027253

Google Scholar

[8] R. Akbani, T. Korkmaz, and G. V. S. Raju, Mobile Ad hoc Network Security, in Lecture Notes in Electrical Engineering, vol. 127. New York: Springer-Verlag, 2012, p.659–666.

DOI: 10.1007/978-3-642-25769-8_92

Google Scholar

[9] V. C. Gungor and G. P. Hancke, Industrial wireless sensor networks: Challenges, design principles, and technical approach, IEEE Trans. Ind. Electron., vol. 56, no. 10, p.4258–4265, Oct. (2009).

DOI: 10.1109/tie.2009.2015754

Google Scholar

[10] J. G. Rocha, L. M. Goncalves, P. F. Rocha, M. P. Silva, and S. Lanceros-Mendez, Energy harvesting from piezoelectric materials fully integrated in footwear, IEEE Trans. Ind. Electron., vol. 57, no. 3, p.813–819, Mar. (2010).

DOI: 10.1109/tie.2009.2028360

Google Scholar

[11] A. Singh, M. Maheshwari, and N. Kumar, Security and trust management in MANET, in Communications in Computer and Information Science, vol. 147. New York: Springer-Verlag, 2011, pt. 3, p.384–387.

DOI: 10.1007/978-3-642-20573-6_67

Google Scholar

[12] A. Tabesh and L. G. Frechette, A low-power stand-alone adaptive circuit for harvesting energy from a piezoelectric micropower generator, IEEE Trans. Ind. Electron., vol. 57, no. 3, p.840–849, Mar. (2010).

DOI: 10.1109/tie.2009.2037648

Google Scholar

[13] Wenbao Jiang, Hua Song, and Yiqi Dai, Real-time intrusion detection for high-speed networks, Computer & Security, Vol 24, No 4, pp.287-295, (2005).

DOI: 10.1016/j.cose.2004.07.005

Google Scholar

[14] S. Stolfo and et al, The third international knowledge discovery and data mining twls competition [online]. Available: http: /kdd. ics . uci. edu/databases/kddCup99/kddCup99. html, (2002).

Google Scholar

[15] Y. Freund and R. E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, Compurer and System Sciences, Vol 55, No 1, pp.119-139, August (1997).

DOI: 10.1006/jcss.1997.1504

Google Scholar