[1]
Cheng, H. and Castro, I.P., Near Wall Flow over Urban- Like Roughness, Boundary-Layer Meteorology 104: 229- 259, (2002).
DOI: 10.1023/a:1016060103448
Google Scholar
[2]
Cheng, H., Hayden, P., Robins, A.G. and Castro, I.P., Flow over Cube Arrays of Different Packing Densities, J. W. Eng. Ind. Aerodyn. 95: 715-740, (2007).
DOI: 10.1016/j.jweia.2007.01.004
Google Scholar
[3]
Hagishima, A., Tanimoto, J., Nagayama, K. and Meno S., Aerodynamic Parameters of Regular Arrays of Rectangular Blocks with Various Geometries, Boundary-Layer Meteorology 132: 315-337, (2009).
DOI: 10.1007/s10546-009-9403-5
Google Scholar
[4]
Zaki, S. A., Hagishima, A., Tanimoto, J., and Ikegaya, N., Aerodynamic Parameters of Urban Building Arrays with Random Geometries, Boundary Layer Meteorol 138: 99-120, (2011).
DOI: 10.1007/s10546-010-9551-7
Google Scholar
[5]
Zaki, S. A., Hagishima, A. and Tanimoto, J., Spatial Distribution of Pressure Drag Acting on Rectangular Block Arrays with Various Layouts, Proceedings of Building Simulation (2011).
Google Scholar
[6]
Zaki, S. A., Hagishima, A. and Tanimoto, J., Experimental Study of Wind-induced Ventilation in Urban Building of Cube Arrays with Various Layouts, J. Wind Eng. Ind. Aerodyn. 103: 31-40, (2012).
DOI: 10.1016/j.jweia.2012.02.008
Google Scholar
[7]
Cheng, Y., Lien, F.S., Yee, E. and Sinclair, R., A Comparison of LES with A Standard κ-ε RANS Model for the Prediction of A Fully-Developed Turbulent Flow over A Matrix of Cubes, Journal of Wind Engineering and Industrial Aerodynamics 91: 1301-1328, (2003).
DOI: 10.1016/j.jweia.2003.08.001
Google Scholar
[8]
Evola, G. and Popov, V., Computational Analysis of Wind-Driven Natural Ventilation in Buildings, Energy and Buildings 38: 491-501, (2006).
DOI: 10.1016/j.enbuild.2005.08.008
Google Scholar
[9]
Meroney, R. N., CFD Prediction of Airflow in Buildings for Natural Ventilation, The 11th Americas Conference on Wind Engineering, (2009).
Google Scholar
[10]
Abd Razak, A., Hagishima, A. and Tanimoto, J., Analysis of Airflow over Building Arrays for Assessment of Urban Wind Environment, Building and Environment 1-10, 10, (2012).
DOI: 10.1016/j.buildenv.2012.08.007
Google Scholar
[11]
Abd Razak, A., Hagishima, A., Ikegaya N., Mohamad, M. F., and Zaki, S. A., Mean Wind Flow Field around Idealized Block Arrays with Various Aspect Ratios, Applied Mechanics and Materials 393: 767-773, (2013).
DOI: 10.4028/www.scientific.net/amm.393.767
Google Scholar
[12]
Kanda, M., Moriwaki, R. and Kasamatsu, F., Large-Eddy Simulation of Turbulent Organized Structures Within and Above Explicitly Resolved Cube Arrays, (2004).
DOI: 10.1023/b:boun.0000027909.40439.7c
Google Scholar
[13]
Coceal, O., Thomas, T. G., Castro, I. P., Belcher and S. E., Mean Flow and Turbulence Statistics over Groups of Urban-Like Cubical Obstacles, Boundary-Layer Meteorology 121: 491-519, (2006).
DOI: 10.1007/s10546-006-9076-2
Google Scholar
[14]
Xie, Z. -T., Coceal, O. and Castro, I. P., Large-Eddy Simulation of Flows over Random Urban-Like Obstacles, Boundary-Layer Meteorology 129: 1-23, (2008).
DOI: 10.1007/s10546-008-9290-1
Google Scholar
[15]
Claus, J., Krogstad, P. -A. and Castro, I. P., Some Measurements of Surface Drag in Urban-Type Boundary Layers at Various Wind Angles, 145: 407-422, (2012).
DOI: 10.1007/s10546-012-9736-3
Google Scholar
[16]
Wong, C. C. C. and Liu, C. -H., Pollutant Plume Dispersion in the Atmospheric Boundary Layer over Idealized Urban Roughness, Boundary-Layer Meteorology 147: 281-300, (2013).
DOI: 10.1007/s10546-012-9785-7
Google Scholar
[17]
Xie, Z-.T. and Castro, I. P., LES and RANS for Turbulent Flow over Arrays of Wall-Mounted Obstacles, (2006).
DOI: 10.1007/s10494-006-9018-6
Google Scholar
[18]
Snyder, W. H. and Castro, I. P., The Critical Reynolds Number for Rough-Wall Boundary Layers, J. W. Eng. Ind. Aero. 90: 41-54, (2002).
Google Scholar