Optical Properties of Two Malposed Silver Triangular Nanocylinder Arrays

Article Preview

Abstract:

We propose and theoretically study a novel plasmonic nanostructure composed of two malposed silver (Ag) triangular nanocylinder arrays by the finite-difference time-domain (FDTD) method. The excitation of the localized surface plasmons (LSPs) of the metal triangular nanocylinders, and the strong interaction coupling between LSPs contribute to the enhanced transparency in the visible and near-in region (NIR). The transparency response in the proposed nanostructure is modified by changing the gap distances between two adjacent triangular nanocylinders, and the dielectric environments. The tunable enhanced optical transparency of the proposed nanostructure provides potential applications in sensors and plasmonic filters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

182-186

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio and P. Wolff: Nature 391 (1998), p.667.

Google Scholar

[2] H.F. Ghaemi, T. Thio, D.E. Grupp, T.W. Ebbesen and H.J. Lezec: Phys. Rev. B 58 (1998), p.6779.

DOI: 10.1103/physrevb.58.6779

Google Scholar

[3] S.A. Darmanyan and A.V. Zayats: Phys. Rev. B 67 (2003), p.035424.

Google Scholar

[4] L. Salomon, F. Grillot, A. V Zayats and F.D. Fornel: Phys. Rev. Let. 86 ( 2001), p.1110.

Google Scholar

[5] J. Aizpurua, P. Hanarp, D.S. Sutherland, M. Käll, G.W. Bryant and F.J.G. de Abajo: Phys. Rev. Lett. 90 (2003), p.057401.

DOI: 10.1103/physrevlett.90.057401

Google Scholar

[6] B.J. Wiley, Y. Chen, J.M. McLellan, Y. Xiong, Z.Y. Li , D. Ginger and Y. Xia: Nano Lett. 7 (2007), p.1032.

Google Scholar

[7] R.M. Bakker, V.P. Drachev, H.K. Yuan and V.M. Shalaev: Opt. Express 12 (2004), p.3701.

Google Scholar

[8] B.B. Xu, R. Zhang, H. Wang, X.Q. Liu, L. Wang, Z.C. Ma Q. D. Chen, X.Z. Xiao, B. Han and H.B. Sun: Nanoscale 4 (2012), p.6955.

Google Scholar

[9] T. Atay, J.H. Song and A.V. Nurmikko: Nano Lett. 4 (2004), p.1627.

Google Scholar

[10] K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai and A. Scherer: Nat. Mater. 3 (2004), p.601.

Google Scholar

[11] C.J. Tang, Z.L. Wang, W.Y. Zhang, S. N. Zhu, N.B. Ming, G. Sun and P. Sheng: Phys. Rev. B 80 (2009), p.165401.

Google Scholar

[12] H.R. Stuart and D.G. Hall: Phys. Rev. Lett. 80 (1998), p.5663.

Google Scholar

[13] Z.Q. Liu, G.Q. Liu, X.S. Liu, K. Huang, Y.H. Chen, Y. Hu and G.L. Fu: Plasmonics 8 (2013), p.1285.

Google Scholar

[14] Z.Q. Liu, G.Q. Liu, K. Huang, Y.H. Chen, Y. Hu, X.N. Zhang, Z.J. Cai: IEEE Photonic Tech. L. 25 (2013), p.1157.

Google Scholar

[15] G.Q. Liu, Z.Q. Liu, K. Huang, Y.H. Chen, Z.J. Cai, X.N. Zhang, Y. Hu: Plasmonics (2013), doi: 10. 1007/s 11468-013-9593-z.

Google Scholar

[16] K.L. Kelly, E. Coronado, L.L. Zhao and G.C. Schatz: J. Phys. Chem. B 107 (2003), p.668.

Google Scholar

[17] V. Amendola, O.M. Bakr and F. Stellacci: Plasmonics 5 (2010), p.85.

Google Scholar

[18] A. Taflove, in: Computational Electrodynamics: the Finite Difference Time DomainMethod, 2nd, Artech House, Norwood (2002).

Google Scholar

[19] P.B. Johnson, R.W. Christy: Phys. Rev. B 6 (1972), p.4370.

Google Scholar

[20] S.P. Zhang, K. Bao N.J. Halas, H.X. Xu and P. Nordlander: Nano Lett. 11 (2011), p.1657.

Google Scholar

[21] E.M. Larsson, J. Alegret, M. Käll and D.S. Sutherland: Nano Lett. 7 (2007), p.1256.

Google Scholar

[22] Z.Q. Liu, G.Q. Liu, H.Q. Zhou, X.S. Liu, K. Huang, Y.H. Chen, G.L. Fu: Nanotechnology 24 (2013), p.155203.

Google Scholar

[23] F. Hao, Y. Sonnefraud, P.V. Dorpe, S.A. Maier, N.J. Halas and P. Nordlander: Nano Lett. 8 (2008), p.3983.

DOI: 10.1021/nl802509r

Google Scholar

[24] R. Singh, C. Rockstuhl, F. Lederer and W. Zhang: Phys. Rev. B 79 (2009), p.085111.

Google Scholar