[1]
Johan Morren, SjoerdW. H. de Haan, Wil L. Kling, and J. A. Ferreira, Wind Turbines Emulating Inertia and Supporting Primary Frequency Control, IEEE Transaction on power systems. 21 (2006) 433-434.
DOI: 10.1109/tpwrs.2005.861956
Google Scholar
[2]
G. Krause, Ed., From Turbine to Wind Farms-Technical Requirements and Spin-Off Products, First published March, 2011, Printed in India: InTech Janeza Trdine 9, 51000 Rijeka, Croatia, (2011).
DOI: 10.5772/641
Google Scholar
[3]
Z. S. Zhang, Y. Z. Sun, J. Lin, and G. J. Li, Coordinated frequency regulation by doubly fed induction generator-based wind power plants, IET Renewable Power Generation. 6 (2012). 38.
DOI: 10.1049/iet-rpg.2010.0208
Google Scholar
[4]
K. C. Divya and P. S. Nagendra Rao, Effect of Grid Voltage and Frequency Variations on the Output of Wind Generators, Electric Power Components and Systems. 36(2008) 602-614.
DOI: 10.1080/15325000701801595
Google Scholar
[5]
I. S. Naser, A. Garba, O. Anaya-Lara, and K. L. Lo, Voltage Stability of Transmission Network with Different Penetration Levels of Wind Generation, presented at the Universities Power Engineering Conference (UPEC), Cardiff, Wales, (2010).
Google Scholar
[6]
K. E. Okedu, Participation of Energy Capacitor System in Hydrogen Production, Voltage and Frequency Control in Wind Generation, Pacific Journal of Science and Technology. 12(2011) 605-612.
Google Scholar
[7]
Y. Ren, L. Cao, J. Zhou, L. Liu, M. Zhang, and H. Li, The Modeling and Control of VSCF DFIG Wind Power Generation Based on PSCAD, presented at the Intelligent Control and Information Processing, Dalian, China, (2010).
DOI: 10.1109/icicip.2010.5564163
Google Scholar
[8]
Ping-Kwan Keung, H. B. Pei Li, and B. T. Ooi, Kinetic energy of wind-turbine generators for system frequency support, IEEE Transaction on power systems. 24(2009)279-287.
DOI: 10.1109/tpwrs.2008.2004827
Google Scholar
[9]
G. Ramtharan, N. Jenkins, and J. B. Ekanayake, Frequency support from doubly fed induction generator wind turbines, IET Renewable Power Generation. 1(2007)3-9.
DOI: 10.1049/iet-rpg:20060019
Google Scholar
[10]
L. M. Fernandez, C. A. Garcia, and F. Jurado, Comparative study on the performance of control systems for doubly fed induction generator (DFIG) wind turbines operating with power regulation, Energy. 33(2008)1438-1452.
DOI: 10.1016/j.energy.2008.05.006
Google Scholar
[11]
M. Itsaso Martinez, Gerardo Tapia, Ana Susperregui, and H. Camblong, Sliding-Mode Control for DFIG Rotor- and Grid-Side Converters Under Unbalanced and Harmonically Distorted Grid Voltage, IEEE Transaction on Energy Conversion. 27(2012) 328-338.
DOI: 10.1109/tec.2011.2181996
Google Scholar
[12]
Yongsu Han, Sungmin Kim, S. Jung-Ik Ha, and W. -J. Lee, A Doubly Fed Induction Generator Controlled in Single-Sided Grid Connection for Wind Turbines, IEEE Transaction on Energy Conversion. 28(2013) 413-424.
DOI: 10.1109/tec.2013.2252177
Google Scholar
[13]
BinWu, Yongqiang Lang, Navid Zargari, and S. Kouro, Power conversion and control of wind energy systems. Hoboken, New Jersey: John Wiley & Sons, Inc., (2011).
Google Scholar
[14]
Michael K. Bourdoulis and A. T. Alexandridis, Nonlinear Stability Analysis of DFIG Wind Generators in Voltage Oriented Control Operation, in European Control Conference (ECC), Zürich, Switzerland. (2013) 484-489.
DOI: 10.23919/ecc.2013.6669692
Google Scholar
[15]
Eftichios Koutroulis and K. Kalaitzakis, Design of a Maximum Power Tracking System for Wind-Energy-Conversion Applications, IEEE Transaction on Industrial Electronics. 53(2006) 486-494.
DOI: 10.1109/tie.2006.870658
Google Scholar
[16]
Soares Orlando, Gonçalves Henrique, Martins António, and C. Adriano, Nonlinear control of the doubly-fed induction generator in wind power systems, Renewable Energy. 35(2010) 1662-1670.
DOI: 10.1016/j.renene.2009.12.008
Google Scholar
[17]
K. E. Okedu, A Study of Wind Farm Stabilization Using DFIG or STATCOM Considering Grid Requirements, Engineering Science and Technology Review. 3(2010) 200-209.
DOI: 10.25103/jestr.031.33
Google Scholar
[18]
J. G. Slootweg, S. W. H. de Haan, H. Polinder, and W. L. Kling, General Model for Representing Variable Speed Wind Turbines in Power System Dynamics Simulations, IEEE Transaction on power systems. 18(2003)144-151.
DOI: 10.1109/tpwrs.2002.807113
Google Scholar
[19]
T. Logenthiran and D. Srinivasan, Optimal selection and sizing of distributed energy resources for distributed power systems, Journal of Renewable and Sustainable Energy. 4(2012). 053119.
DOI: 10.1063/1.4757618
Google Scholar
[20]
E. E. G. Ozsoy, E. , Sabanovic, A. , Gokasan, M. , Astator voltage Oriented DFIG generator control Generator Control Method with a Disturbance Observer, presented at the EUROCON Zagreb, Croatia, (2013).
DOI: 10.1109/eurocon.2013.6625118
Google Scholar
[21]
Rogério G. de Almeida and J. A. P. Lopes, Participation of Doubly Fed Induction Wind Generators in System Frequency Regulation, IEEE Transaction on power systems. 22(2007) 944-950.
DOI: 10.1109/tpwrs.2007.901096
Google Scholar
[22]
L. Holdsworth, J. B. Ekanayake, and N. Jenkins, Power system frequency response from fixed speed and doubly fed induction generator-based wind turbines, Wind Energy. 7(2004) 21-35.
DOI: 10.1002/we.105
Google Scholar
[23]
Z. S. Zhang, Y. Z. Sun, J. Lin, and G. J. Li, Coordinated frequency regulation by doubly fed induction generator-based wind power plants, IET Renewable Power Generation. 6(2012) 38–47.
DOI: 10.1049/iet-rpg.2010.0208
Google Scholar
[24]
Jinsik Lee, Jinho Kim, Yeon-Hee Kim, Yeong-Han Chun, Sang Ho Lee, Jul-Ki Seok, and Y. C. Kang, Rotor Speed-based Droop of a Wind Generator in a Wind Power Plant for the Virtual Inertial Control, Journal of Electrical Engineering and Technology. 8(2013).
DOI: 10.5370/jeet.2013.8.5.1021
Google Scholar
[25]
Gonzalo Abad, Jesús López, Miguel A. Rodríguez, Luis Marroyo, and G. Iwanski, Doubly Fed Induction Machine Modeling and Control for Wind Energy Generation, Hoboken, New Jersey: John Wiley & Sons, Inc., (2011).
DOI: 10.1002/9781118104965
Google Scholar