[1]
X. S. Li, L. F. Kong and F. D. Zhao, A position-based approach of extracting elderly daily behavior habits for service robot. Proc. of 3rd IEEE Conference on Industrial Electronics and Applications. Singapore, (2008).
DOI: 10.1109/iciea.2008.4582741
Google Scholar
[2]
L. Liao, D. Fox, and H. Kautz, Extracting Places and Activities from GPS Traces Using Hierarchical Conditional Random Fields, The International Journal of Robotics Research, vol. 26, no. 1 (2007), p.119.
DOI: 10.1177/0278364907073775
Google Scholar
[3]
M. Bennewitz, W. Burgard, and S. Thrun, "Learning Motion Patterns of Persons for Mobile Service Robots, Proc. of the International Conference on Robotics and Automation(ICRA), vol. 4, (2002), pp.3601-3606.
DOI: 10.1109/robot.2002.1014268
Google Scholar
[4]
V. Guralnik and K. Z. Haigh, Learning Models of Human Behaviour with Sequential Patterns, Proc. of the AAAI-02 Workshoop Autonation as Caregiver, (2002) , pp.24-30.
Google Scholar
[5]
M. Philipose, K.P. Fishkin, M. Perkowitz, etc, Inferring activities from interactions with objects, Pervasive Computing, (2005), pp.50-56.
DOI: 10.1109/mprv.2004.7
Google Scholar
[6]
J. Lafferty, A. McCallum and F. Pereira, Conditional random fields: Probabilistic models for segmenting and labeling sequence data. Proc. of the International Conference on Machine Learning, (2001).
DOI: 10.1145/1015330.1015422
Google Scholar
[7]
A. Quattoni, M. Collins and T. Darrell. Conditional random fields for object recognition. Proc. of the Neural Information Processing Systems, Vancouver , Canada , (2004).
Google Scholar
[8]
T. Y. Huang, C. D. Shi, F. X. LI and C. Cheng, Discriminative Random Fields for Online Behavior Recognition. Chinese Journal of Computers, vol. 32, no. 2, (2009), pp.275-281.
DOI: 10.3724/sp.j.1016.2009.00275
Google Scholar
[9]
X. S. Li, F. D. Zhao, L. F. Kon and P. L. Wu, Learning Human Daily Behavior Habit Patterns Using EM Algorithm for Service Robot, IEEE International Conference on Robotics and Biomimetics, Sanya, China, (2007).
DOI: 10.1109/robio.2007.4522167
Google Scholar