[1]
M. L. Corradini, G. Orlando. Control of mobile robots with uncertainties in the dynamical model: a discrete time sliding mode approach with experimental results. Control Engineering Practice 2002 10 23-24.
DOI: 10.1016/s0967-0661(01)00109-5
Google Scholar
[2]
R. W. Brockett. Asymptotic stability and feedback stabilization. Differential Geometric Control Theory, Boston: Birkhauser, pp.181-208, (1983).
Google Scholar
[3]
I. Kolmanovsky, N. H. McClamroch. Development in nonholonomic control problems. IEEE Control System Magazine, 1995, 20-36.
Google Scholar
[4]
Y. Kanayama, Y. Kimura, F. Miyazaki, T. Noguchi. A stable tracking control method for an autonomous mobile robot. Proceedings of IEEE Conference on Robotics and Automation, 1990, 384-389.
DOI: 10.1109/robot.1990.126006
Google Scholar
[5]
W. Oelen, J. van Amerongen. Robust tracking control of two-degrees-of-freedom mobile robots. Control Engineering Practice, 1994, 2(2), 333-340.
DOI: 10.1016/0967-0661(94)90215-1
Google Scholar
[6]
D. H. Kim, T. H. Oh. Tracking control of a two-wheeled mobile robot using input-output linearizati- on. Control Engineering Practice, 1999, 7, 369-373.
DOI: 10.1016/s0967-0661(98)00184-1
Google Scholar
[7]
Z. P. Jiang, H. Nijmeijev. A recursive technique for tracking control of nonholonomic system in chained form. IEEE Transactions on Automatic Control, 1999, 44(2), 265-279.
DOI: 10.1109/9.746253
Google Scholar
[8]
Z. P. Jiang, H. Nijmeijev. Tracking control of mobile robots: a case study in backstepping. Automatica, 1997, 33(7), 1393-1399.
Google Scholar
[9]
A. M. Bloch, S. Drakunov. Stabilization and tracking in the nonholonomic integrator via sliding modes. System and Control Letters, 1996, 29(2), 91-99.
DOI: 10.1016/s0167-6911(96)00049-7
Google Scholar
[10]
S. Pawlowski, P. Dutkiewicz, K. Kozlowski, W. Wroblewski. Fuzzy logic implementation in mobile robot control. Proceedings of the second International Workshop on Robot Motion and Control, 2001, 65-70.
DOI: 10.1109/romoco.2001.973433
Google Scholar
[11]
S. V. Gusev, I. A. Makarov, I. E. Paromtchik, V. A. Yakubovich, C. Laugier. Adaptive motion control of a nonholonomic vehicle. Proceedings of IEEE International Conference on Robotics and Automation, 1998, 3285-3290.
DOI: 10.1109/robot.1998.680945
Google Scholar
[12]
F. N. Martins, W. C. Celeste, R. Carelli, M. S. Filho, T. F. Bastos-Filho. An adaptive dynamic controller for autonomous mobile robot trajectory tracking. Control Engineering Practice, 2008, 16, 1354-1363.
DOI: 10.1016/j.conengprac.2008.03.004
Google Scholar
[13]
S. Jakubek, M. Seyr, G. Novak. Autonomous mobile robot proprioceptive navigation and predictive trajectory tracking. International Journal of Control, 2008, 81(6), 989-1001.
DOI: 10.1080/00207170701616882
Google Scholar
[14]
M. L. Corradini, G. Orlando. Control of mobile robots with uncertainties in the dynamical model: a discrete time sliding mode approach with experimental results. Control Engineering Practice, 2002, 10, 23-34.
DOI: 10.1016/s0967-0661(01)00109-5
Google Scholar
[15]
R. Fierro, F. L. Lewis. Control of a nonholonomic mobile robot using neural networks. IEEE Transactions on Neural Networks, 1998, 9(4), 589-600.
DOI: 10.1109/72.701173
Google Scholar
[16]
Jun Ye. Adaptive control of nonlinear PID-based analog neural networks for a nonholonomic mobile robot. Neurocomputing, 2008, 71, 1561-1565.
DOI: 10.1016/j.neucom.2007.04.014
Google Scholar
[17]
B. S. Chen, T. S. Lee, W. S. Chang. A robust H∞ model reference tracking design for non-holonomic mechanical control systems. International Journal of Control, 1996, 63, 283-306.
DOI: 10.1080/00207179608921844
Google Scholar
[18]
C. Y. Chen, TH. S. Li, Y. C. Yeh, C. C. Chang. Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots. Mechatronics, 2009, 19, 156-166.
DOI: 10.1016/j.mechatronics.2008.09.004
Google Scholar
[19]
A. Tornambé, P. Valigi, A decentralized controller for the robust stabilization of a class of MIMO dynamical systems, Journal of Dynamic Systems, Measurement and Control 1994, 116, 293-304.
DOI: 10.1115/1.2899223
Google Scholar