Adaptive Tracking Control of Wheeled Mobile Robots

Article Preview

Abstract:

Trajectory-tracking problem of wheeled mobile robots is investigated. Adaptive control scheme utilized has only one control signal. The control input gives out the velocity increments which will be utilized to adjust the pose of WMR so as to track the desired trajectories. The controller adopted is simple to realize and easy to tune the parameters, which is benefit to real applications. Numerical simulation results show that the control scheme is valid.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1195-1199

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. L. Corradini, G. Orlando. Control of mobile robots with uncertainties in the dynamical model: a discrete time sliding mode approach with experimental results. Control Engineering Practice 2002 10 23-24.

DOI: 10.1016/s0967-0661(01)00109-5

Google Scholar

[2] R. W. Brockett. Asymptotic stability and feedback stabilization. Differential Geometric Control Theory, Boston: Birkhauser, pp.181-208, (1983).

Google Scholar

[3] I. Kolmanovsky, N. H. McClamroch. Development in nonholonomic control problems. IEEE Control System Magazine, 1995, 20-36.

Google Scholar

[4] Y. Kanayama, Y. Kimura, F. Miyazaki, T. Noguchi. A stable tracking control method for an autonomous mobile robot. Proceedings of IEEE Conference on Robotics and Automation, 1990, 384-389.

DOI: 10.1109/robot.1990.126006

Google Scholar

[5] W. Oelen, J. van Amerongen. Robust tracking control of two-degrees-of-freedom mobile robots. Control Engineering Practice, 1994, 2(2), 333-340.

DOI: 10.1016/0967-0661(94)90215-1

Google Scholar

[6] D. H. Kim, T. H. Oh. Tracking control of a two-wheeled mobile robot using input-output linearizati- on. Control Engineering Practice, 1999, 7, 369-373.

DOI: 10.1016/s0967-0661(98)00184-1

Google Scholar

[7] Z. P. Jiang, H. Nijmeijev. A recursive technique for tracking control of nonholonomic system in chained form. IEEE Transactions on Automatic Control, 1999, 44(2), 265-279.

DOI: 10.1109/9.746253

Google Scholar

[8] Z. P. Jiang, H. Nijmeijev. Tracking control of mobile robots: a case study in backstepping. Automatica, 1997, 33(7), 1393-1399.

Google Scholar

[9] A. M. Bloch, S. Drakunov. Stabilization and tracking in the nonholonomic integrator via sliding modes. System and Control Letters, 1996, 29(2), 91-99.

DOI: 10.1016/s0167-6911(96)00049-7

Google Scholar

[10] S. Pawlowski, P. Dutkiewicz, K. Kozlowski, W. Wroblewski. Fuzzy logic implementation in mobile robot control. Proceedings of the second International Workshop on Robot Motion and Control, 2001, 65-70.

DOI: 10.1109/romoco.2001.973433

Google Scholar

[11] S. V. Gusev, I. A. Makarov, I. E. Paromtchik, V. A. Yakubovich, C. Laugier. Adaptive motion control of a nonholonomic vehicle. Proceedings of IEEE International Conference on Robotics and Automation, 1998, 3285-3290.

DOI: 10.1109/robot.1998.680945

Google Scholar

[12] F. N. Martins, W. C. Celeste, R. Carelli, M. S. Filho, T. F. Bastos-Filho. An adaptive dynamic controller for autonomous mobile robot trajectory tracking. Control Engineering Practice, 2008, 16, 1354-1363.

DOI: 10.1016/j.conengprac.2008.03.004

Google Scholar

[13] S. Jakubek, M. Seyr, G. Novak. Autonomous mobile robot proprioceptive navigation and predictive trajectory tracking. International Journal of Control, 2008, 81(6), 989-1001.

DOI: 10.1080/00207170701616882

Google Scholar

[14] M. L. Corradini, G. Orlando. Control of mobile robots with uncertainties in the dynamical model: a discrete time sliding mode approach with experimental results. Control Engineering Practice, 2002, 10, 23-34.

DOI: 10.1016/s0967-0661(01)00109-5

Google Scholar

[15] R. Fierro, F. L. Lewis. Control of a nonholonomic mobile robot using neural networks. IEEE Transactions on Neural Networks, 1998, 9(4), 589-600.

DOI: 10.1109/72.701173

Google Scholar

[16] Jun Ye. Adaptive control of nonlinear PID-based analog neural networks for a nonholonomic mobile robot. Neurocomputing, 2008, 71, 1561-1565.

DOI: 10.1016/j.neucom.2007.04.014

Google Scholar

[17] B. S. Chen, T. S. Lee, W. S. Chang. A robust H∞ model reference tracking design for non-holonomic mechanical control systems. International Journal of Control, 1996, 63, 283-306.

DOI: 10.1080/00207179608921844

Google Scholar

[18] C. Y. Chen, TH. S. Li, Y. C. Yeh, C. C. Chang. Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots. Mechatronics, 2009, 19, 156-166.

DOI: 10.1016/j.mechatronics.2008.09.004

Google Scholar

[19] A. Tornambé, P. Valigi, A decentralized controller for the robust stabilization of a class of MIMO dynamical systems, Journal of Dynamic Systems, Measurement and Control 1994, 116, 293-304.

DOI: 10.1115/1.2899223

Google Scholar