[1]
Akkoyunlu A, Erturk F. Evaluation of air pollution trends in istanbul. Int J Environ Pollut 2003 (18): 98-388.
Google Scholar
[2]
Elbir T, Muezzinoglu A, Bayram A. Evaluation of some air pollution indicators in Turkey. Environ Int 2000 (26): 5-10.
Google Scholar
[3]
Tayanc M. An assessment of spatial and temporal variation of sulfur dioxide levels over Istanbul, Turkey. Environ Pollut 2000 (107): 9-61.
DOI: 10.1016/s0269-7491(99)00131-1
Google Scholar
[4]
McCollister GM, Wilson K R. Linear stochastic models for forecasting daily maxima and hourly concentrations of air pollutants. Atmospheric Environment 1974 (9): 23-416.
DOI: 10.1016/0004-6981(75)90127-4
Google Scholar
[5]
Yilmaz Yildirim , Mahmut Bayramoglu. Adaptive neuro-fuzzy based modelling for prediction of air pollution daily levels in city of Zonguldak. Chemosphere 2006 (63): 1575-1582.
DOI: 10.1016/j.chemosphere.2005.08.070
Google Scholar
[6]
Wei-Zhen Lu, etc., Potential assessment of a neural network model with PCA/RBF approach for forecasting pollutant trends in Mong Kok urban air, Hong Kong. Environmental Research 2004(96): 79-87.
DOI: 10.1016/j.envres.2003.11.003
Google Scholar
[7]
D.S. Broomhead, D. Lowe. Multivariable functional interpolation and adaptotive networks. complex Systems 1988 (11): 321-355.
Google Scholar
[8]
C. M. Bishop, Improving the generalization properties of radial basis function neural networks. Neural Comput 1991(3): 579-588.
DOI: 10.1162/neco.1991.3.4.579
Google Scholar
[9]
D. K. WeddingII, K. J. Cios, Time series forecasting by combining RBF networks certainty factors and the Box-Jenkins model. Neuro computing 1996 (10): 149-168.
DOI: 10.1016/0925-2312(95)00021-6
Google Scholar
[10]
L. Yu, W. Huang, K. K. Lai, S. Y. Wang, A reliability-based RBF network ensemble model for foreign exchange rates prediction, in: I. King, etal. (Eds. ). ICONIP 2006, Part III, Lecture Notes in Computer Science, Vol. 4234, 2006, pp.380-389.
DOI: 10.1007/11893295_43
Google Scholar
[11]
Lean Yu , Kin Keung Lai , Shouyang Wang. Multistage RBF neural network ensemble learning for exchange rates forecasting. Neuro computing 2008 (71): 3295-3302.
DOI: 10.1016/j.neucom.2008.04.029
Google Scholar
[12]
Chien-Cheng Lee, Yu-Chun Chiang, Cheng-Yuan Shih, Chun-Li Tsai. Noisy time series prediction using M-estimator based robust radial basis function neural networks with growing and pruning techniques. Expert Systems with Applications 2009 (36): 4717–4724.
DOI: 10.1016/j.eswa.2008.06.017
Google Scholar