Hydrogen Storage in A-Type Zeolite by Grand Canonical Monte Carlo Simulation

Article Preview

Abstract:

Grand Canonical Monte Carlo(GCMC) method was employed to simulate the adsorption properties of molecular hydrogen on NaA zeolite at 40-293 K and pressures up to 10000 kPa in this paper. The results indicated that the adsorption capacity of hydrogen increased with decreasing temperatures and increasing pressures. The highest hydrogen uptake value is 1.54 wt.% at 40 K and 10000kPa. Adsorption temperature has an important effect on adsorption energies and adsorption sites of hydrogen molecules in NaA zeolite. For lower temperature (below 180 K), the oxygen atoms of zeolite framework and extra-framework cations are stable adsorption sites of hydrogen molecules. For the higher temperatures (above 180 K), the oxygen atoms are only stable adsorption sites of hydrogen molecules.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1518-1522

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Schlapbach, A. Zttel: Nature Vol. 414 (2001), p.353.

Google Scholar

[2] X. M. Du, E. D. Wu: J. Phys. Chem. Solids Vol. 68 (2007), p.1692.

Google Scholar

[3] F. Stephanie-Victoire, A. M. Goulay, E. C. de Lara: Langmuir Vol. 14 (1998), p.7255.

Google Scholar

[4] H. W. Langmi, A. Walton, M. M. Al-Mamouri, S. R. Johnson, D. Book, J. D. Speight, P. P. Edwards, I. Gameson, P. A. Anderson, I. R. Harris: J. Alloys Comp. Vol. 356-357 (2003), p.710.

DOI: 10.1016/s0925-8388(03)00368-2

Google Scholar

[5] X. M. Du, E. D. Wu: Chin. J. Mater. Res. Vol. 20 (2006), p.591.

Google Scholar

[6] J. J. Pluth, J. V. Simth: J. Am. Chem. Soc. Vol. 102 (1980), p.4704.

Google Scholar

[7] www. cse. scitech. ac. uk.

Google Scholar

[8] A. W. C. van den Berg, S. T. Bromley, N. Ramsahye, Th. Maschmery: J. Phys. Chem. B Vol. 108 (2004), p.5088.

Google Scholar

[9] A. I. Skoulidas, D. M. Ackerman, J. K. Johnson, D. S. Sholl: Phys. Rev. Lett. Vol. 89 (2002), p.185901.

Google Scholar

[10] K. Watanabe, N. Austin, M.R. Stapleton: Mol. Simul. Vol. 15 (1995), p.197.

Google Scholar

[11] M. K. Song, K. T. No: Catal. Today Vol. 120 (2007), p.374.

Google Scholar

[12] T. C. Golden, S. Sircar: J. Colloid Interface Sci. Vol. 162 (1994), p.182.

Google Scholar

[13] S. H. Jhung, J. W. Yoon, S. J. Lee, J. S. Chang: Chem. Eur. J. Vol. 13 (2007), p.6502.

Google Scholar

[14] X. M. Du, E. D. Wu: Mater. Sci. Forum Vol. 663-665 (2011), p.934.

Google Scholar

[15] C. O. Areán, D. Nachtigallová, P. Nachtigall, E. Garrone, M. R. Delgado: Phys. Chem. Chem. Phys. Vol. 9 (2007), p . 1421.

DOI: 10.1039/b615535a

Google Scholar

[16] C. O. Areán, O.V. Manoilova, B. Bonelli, M. R. Delgado, G. T. Palomino, E. Garrone: Chem. Phys. Lett. Vol. 370 (2003), p.631.

Google Scholar

[17] C. O. Areán, G. T. Palomino, M. R. L. Carayol: Appl. Surf. Sci. Vol. 253 (2007), p.5701.

Google Scholar