Researched on the Corrosion Resistance of Ni-Cr-Mo-Cu Alloy to Aqueous Change with the APF in Regular Way: an Approach of Quantum Electrochemistry

Article Preview

Abstract:

The corrosion resistance of Ni-Cr-Mo-Cu alloys designed by formula APF=4Cr/(2Mo+Cu) to aqueous depend on the APF is investigated. The cathodic current of corrosion reactions was expressed as the quantum electrochemical equation. It is discussed that the APF controls the corrosion resistance to aqueous.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

378-381

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Yang Rui-cheng, Nie Fu-rong, Zheng Li-ping, Properties, Progression and Application of Ni-base Corrosion Resistant Alloys, Journal of Lanzhou University of Technology, Vol. 28 (4), 2002, 29~33.

Google Scholar

[2] Yang Rui-cheng, Nie Fu-rong, Zheng Li-ping, Properties, Progression and Application of Ni-base Corrosion Resistant Alloys, Journal of Lanzhou University of Technology, Vol. 28 (4), 2002, 29~33.

Google Scholar

[3] D.D. Macdonald, The Holy Grail: deterministic prediction of corrosion damage thousand of years into the future, in: Proceedings of Int. Workshop Pred, Long Term Corros. Behav. Nucl. Waste Cysts, Commissariat a I'Energie Atomique and Peesylvania State University, Cadarache, France, November 26-29, (2001).

DOI: 10.1201/9781003580232-8

Google Scholar

[4] R.E. Hummel, Electronic Properties of Materials 3rd ed, Springer-Verlag, New York Berlin Heidelberg, p.66.

Google Scholar

[5] Young R. A., The Rietveld Method, IUCR Monographs on Crystallography 5, Oxford University Press, Oxford, (1993).

Google Scholar

[6] Yakimanski A.V., Kolb U, Matveeva G. N, Voigt-Martin I. G., Tenkovtsev A. V, The use of structure analysis methods in combination with semi-empirical quantum chemical calculations for the estimation of quadratic nonlinear optical coefficients of organic crystal, Acta. Crystallogr, Vol. A53, 1997, 603–614.

DOI: 10.1107/s010876739601570x

Google Scholar

[7] Chelikowsky J.R., Louie S.G., Quantum Theory of Real Materials, Kluwer Academic 1996 Table1. Composition of alloys with APF factor Table2. The ratio of atoms in alloys APF Ni (wt %) Cr (wt %) Mo (wt %) Cu (wt %).

Google Scholar

[59] 17.

Google Scholar

[17] 5 22.

Google Scholar

[1] 33.

Google Scholar

[2] 875.

Google Scholar

[63] 14.

Google Scholar

[21] 5 14.

Google Scholar

[1] 36.

Google Scholar

[62] 26.

Google Scholar

[23] 5 13.

Google Scholar

[1] 24.

Google Scholar

[61] 08.

Google Scholar

[25] 5 12.

Google Scholar

[1] 42.

Google Scholar

[59] 71.

Google Scholar

[27] 5.

Google Scholar

[11] 5.

Google Scholar

[1] 29 APF Ratio of atoms.

Google Scholar

[1] 5 Ni: Cr: Mo: Cu 43: 11: 8: 1.

Google Scholar

[2] 875 Ni: Cr: Mo: Cu 44: 13: 5: 1.

Google Scholar

[3] 3 Ni: Cr: Mo: Cu 42: 15: 5: 1.

Google Scholar

[3] 8 Ni: Cr: Mo: Cu 44: 14: 4: 1.

Google Scholar

[4] 3 Ni: Cr: Mo: Cu 45: 14: 3: 1 Table3. The similarity parameters for Rietveld refinement APF.

Google Scholar

[2] 875.

Google Scholar

[4] 3 Final Rwp.

Google Scholar

[14] 67.

Google Scholar

[13] 20.

Google Scholar

[11] 56.

Google Scholar

[15] 73.

Google Scholar

[14] 89% Final Rp.

Google Scholar

[11] 41.

Google Scholar

[9] 86.

Google Scholar

[9] 25.

Google Scholar

[11] 34.

Google Scholar

[11] 44% Rwp (without background).

Google Scholar

[66] 24.

Google Scholar

[25] 16.

Google Scholar

[64] 45.

Google Scholar

[46] 72.

Google Scholar

[30] 65% Final CMACS.

Google Scholar

[8] 10.

Google Scholar

[11] 10.

Google Scholar

[11] 65.

Google Scholar

[14] 00.

Google Scholar

[9] 76% Fig1. Five alloys XRD pattern Fig3. The densities of states in alloys Fig2. The super-cells of alloys Table5. The input parameters for calculating density of states in five alloys APF.

Google Scholar

[2] 875.

Google Scholar

[4] 3 +Fermi energy (eV) for spin-degenerate system -6. 62657 -6. 59163 -6. 55413 -6. 51135 -6. 49656 Peak height near the Fermi energy.

Google Scholar

[3] 94207.

Google Scholar

[3] 94625.

Google Scholar

[4] 19982.

Google Scholar

[4] 23331.

Google Scholar

[4] 34146.

Google Scholar

[11] 224.

Google Scholar

[11] 283.

Google Scholar

[11] 32009.

Google Scholar

[11] 85887.

Google Scholar

[11] 88787 Table 4. The atom occupancies in alloys.

Google Scholar

[2] 875.

Google Scholar

[4] 3 atom occupancies atom occupancies atom occupancies atom occupancies atom occupancies Ni.

DOI: 10.21236/ada563340

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

99983 Cr.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

99981 Cr.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

74807 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Cr.

Google Scholar

90922 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

99967 Cr.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

99973 Cr.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Cu.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Cu.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Mo.

Google Scholar

93640 Ni.

Google Scholar

99977 Ni.

Google Scholar

[1] 00000 Mo.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Mo.

Google Scholar

72442 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Mo.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Ni.

Google Scholar

98973 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Mo.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Mo.

Google Scholar

71049 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Cu.

Google Scholar

98105 Ni.

Google Scholar

99970 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Mo.

Google Scholar

87242 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Mo.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

99493 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

87814 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

98801 Ni.

Google Scholar

99997 Ni.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Ni.

Google Scholar

99981 Ni.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

88767 Ni.

Google Scholar

99988 Ni.

Google Scholar

91255 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Mo.

Google Scholar

77316 Ni.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Ni.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Ni.

Google Scholar

99987 Ni.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Ni.

Google Scholar

99990 Ni.

Google Scholar

[1] 00000 Cr.

Google Scholar

[1] 00000 Atomic structure.

Google Scholar