p.356
p.361
p.367
p.374
p.378
p.382
p.388
p.392
p.397
Researched on the Corrosion Resistance of Ni-Cr-Mo-Cu Alloy to Aqueous Change with the APF in Regular Way: an Approach of Quantum Electrochemistry
Abstract:
The corrosion resistance of Ni-Cr-Mo-Cu alloys designed by formula APF=4Cr/(2Mo+Cu) to aqueous depend on the APF is investigated. The cathodic current of corrosion reactions was expressed as the quantum electrochemical equation. It is discussed that the APF controls the corrosion resistance to aqueous.
Info:
Periodical:
Pages:
378-381
Citation:
Online since:
May 2011
Authors:
Keywords:
Price:
Сopyright:
© 2011 Trans Tech Publications Ltd. All Rights Reserved
Citation:
[1] Yang Rui-cheng, Nie Fu-rong, Zheng Li-ping, Properties, Progression and Application of Ni-base Corrosion Resistant Alloys, Journal of Lanzhou University of Technology, Vol. 28 (4), 2002, 29~33.
[2] Yang Rui-cheng, Nie Fu-rong, Zheng Li-ping, Properties, Progression and Application of Ni-base Corrosion Resistant Alloys, Journal of Lanzhou University of Technology, Vol. 28 (4), 2002, 29~33.
[3] D.D. Macdonald, The Holy Grail: deterministic prediction of corrosion damage thousand of years into the future, in: Proceedings of Int. Workshop Pred, Long Term Corros. Behav. Nucl. Waste Cysts, Commissariat a I'Energie Atomique and Peesylvania State University, Cadarache, France, November 26-29, (2001).
[4] R.E. Hummel, Electronic Properties of Materials 3rd ed, Springer-Verlag, New York Berlin Heidelberg, p.66.
[5] Young R. A., The Rietveld Method, IUCR Monographs on Crystallography 5, Oxford University Press, Oxford, (1993).
[6] Yakimanski A.V., Kolb U, Matveeva G. N, Voigt-Martin I. G., Tenkovtsev A. V, The use of structure analysis methods in combination with semi-empirical quantum chemical calculations for the estimation of quadratic nonlinear optical coefficients of organic crystal, Acta. Crystallogr, Vol. A53, 1997, 603–614.
[7] Chelikowsky J.R., Louie S.G., Quantum Theory of Real Materials, Kluwer Academic 1996 Table1. Composition of alloys with APF factor Table2. The ratio of atoms in alloys APF Ni (wt %) Cr (wt %) Mo (wt %) Cu (wt %).
[1] 5.
[59] 17.
[17] 5 22.
[1] 33.
[2] 875.
[63] 14.
[21] 5 14.
[1] 36.
[3] 3.
[62] 26.
[23] 5 13.
[1] 24.
[3] 8.
[61] 08.
[25] 5 12.
[1] 42.
[4] 3.
[59] 71.
[27] 5.
[11] 5.
[1] 29 APF Ratio of atoms.
[1] 5 Ni: Cr: Mo: Cu 43: 11: 8: 1.
[2] 875 Ni: Cr: Mo: Cu 44: 13: 5: 1.
[3] 3 Ni: Cr: Mo: Cu 42: 15: 5: 1.
[3] 8 Ni: Cr: Mo: Cu 44: 14: 4: 1.
[4] 3 Ni: Cr: Mo: Cu 45: 14: 3: 1 Table3. The similarity parameters for Rietveld refinement APF.
[1] 5.
[2] 875.
[3] 3.
[3] 8.
[4] 3 Final Rwp.
[14] 67.
[13] 20.
[11] 56.
[15] 73.
[14] 89% Final Rp.
[11] 41.
[9] 86.
[9] 25.
[11] 34.
[11] 44% Rwp (without background).
[66] 24.
[25] 16.
[64] 45.
[46] 72.
[30] 65% Final CMACS.
[8] 10.
[11] 10.
[11] 65.
[14] 00.
[9] 76% Fig1. Five alloys XRD pattern Fig3. The densities of states in alloys Fig2. The super-cells of alloys Table5. The input parameters for calculating density of states in five alloys APF.
[1] 5.
[2] 875.
[3] 3.
[3] 8.
[4] 3 +Fermi energy (eV) for spin-degenerate system -6. 62657 -6. 59163 -6. 55413 -6. 51135 -6. 49656 Peak height near the Fermi energy.
[3] 94207.
[3] 94625.
[4] 19982.
[4] 23331.
[4] 34146.
[11] 224.
[11] 283.
[11] 32009.
[11] 85887.
[11] 88787 Table 4. The atom occupancies in alloys.
[1] 5.
[2] 875.
[3] 3.
[3] 8.
[4] 3 atom occupancies atom occupancies atom occupancies atom occupancies atom occupancies Ni.
DOI: 10.21236/ada563340
[1] 00000 Ni.
[1] 00000 Ni.
99983 Cr.
[1] 00000 Ni.
[1] 00000 Ni.
[1] 00000 Ni.
[1] 00000 Ni.
99981 Cr.
[1] 00000 Ni.
[1] 00000 Ni.
[1] 00000 Ni.
[1] 00000 Ni.
[1] 00000 Cr.
[1] 00000 Ni.
[1] 00000 Ni.
74807 Ni.
[1] 00000 Ni.
[1] 00000 Cr.
90922 Ni.
[1] 00000 Ni.
[1] 00000 Ni.
[1] 00000 Ni.
99967 Cr.
[1] 00000 Ni.
[1] 00000 Ni.
[1] 00000 Ni.
[1] 00000 Ni.
99973 Cr.
[1] 00000 Ni.
[1] 00000 Ni.
[1] 00000 Ni.
[1] 00000 Ni.
[1] 00000 Cr.
[1] 00000 Ni.
[1] 00000 Cu.
[1] 00000 Ni.
[1] 00000 Cu.
[1] 00000 Cr.
[1] 00000 Ni.
[1] 00000 Ni.
[1] 00000 Mo.
93640 Ni.
99977 Ni.
[1] 00000 Mo.
[1] 00000 Cr.
[1] 00000 Ni.
[1] 00000 Mo.
72442 Ni.
[1] 00000 Ni.
[1] 00000 Mo.
[1] 00000 Ni.
[1] 00000 Cr.
[1] 00000 Ni.
98973 Ni.
[1] 00000 Ni.
[1] 00000 Cr.
[1] 00000 Ni.
[1] 00000 Ni.
[1] 00000 Ni.
[1] 00000 Mo.
[1] 00000 Ni.
[1] 00000 Mo.
71049 Ni.
[1] 00000 Ni.
[1] 00000 Ni.
[1] 00000 Cu.
98105 Ni.
99970 Ni.
[1] 00000 Ni.
[1] 00000 Ni.
[1] 00000 Mo.
87242 Ni.
[1] 00000 Ni.
[1] 00000 Mo.
[1] 00000 Cr.
[1] 00000 Ni.
[1] 00000 Cr.
[1] 00000 Ni.
[1] 00000 Ni.
[1] 00000 Cr.
[1] 00000 Cr.
99493 Ni.
[1] 00000 Ni.
87814 Cr.
[1] 00000 Cr.
[1] 00000 Cr.
[1] 00000 Ni.
[1] 00000 Ni.
[1] 00000 Cr.
[1] 00000 Cr.
[1] 00000 Cr.
[1] 00000 Ni.
[1] 00000 Ni.
[1] 00000 Cr.
[1] 00000 Cr.
[1] 00000 Cr.
98801 Ni.
99997 Ni.
[1] 00000 Cr.
[1] 00000 Cr.
[1] 00000 Cr.
[1] 00000 Ni.
[1] 00000 Ni.
[1] 00000 Cr.
[1] 00000 Cr.
[1] 00000 Cr.
[1] 00000 Ni.
[1] 00000 Ni.
[1] 00000 Cr.
[1] 00000 Cr.
[1] 00000 Cr.
[1] 00000 Ni.
99981 Ni.
[1] 00000 Cr.
[1] 00000 Cr.
[1] 00000 Cr.
88767 Ni.
99988 Ni.
91255 Cr.
[1] 00000 Cr.
[1] 00000 Cr.
[1] 00000 Ni.
[1] 00000 Ni.
[1] 00000 Cr.
[1] 00000 Cr.
[1] 00000 Cr.
[1] 00000 Cr.
[1] 00000 Ni.
[1] 00000 Cr.
[1] 00000 Cr.
[1] 00000 Cr.
[1] 00000 Cr.
[1] 00000 Ni.
[1] 00000 Cr.
[1] 00000 Cr.
[1] 00000 Cr.
[1] 00000 Mo.
77316 Ni.
[1] 00000 Cr.
[1] 00000 Cr.
[1] 00000 Cr.
[1] 00000 Cr.
[1] 00000 Ni.
[1] 00000 Cr.
[1] 00000 Cr.
[1] 00000 Cr.
[1] 00000 Ni.
[1] 00000 Ni.
[1] 00000 Cr.
[1] 00000 Cr.
[1] 00000 Cr.
[1] 00000 Ni.
99987 Ni.
[1] 00000 Cr.
[1] 00000 Cr.
[1] 00000 Cr.
[1] 00000 Ni.
99990 Ni.
[1] 00000 Cr.
[1] 00000 Atomic structure.