Covalent Bond Cluster Effects and Phase Transitions in Superconductor Mg1-xAlxB2 Compounds

Article Preview

Abstract:

First-principle calculations were performed for the study of the superconductor MgB2 and AlB2. The doping effect of compound Mg1-xAlxB2 was analyzed by supercell method. Band structure, electronic bands structure, total and partial densities of states were calculated and analyzed in detail. Covalent bond effects (CBC) appeared in the electronic bands structure when doping Al to MgB2. It is found that this CBC effects on Mg1-xAlxB2 samples have prominent relations to superconductivity. The study of the density of state indicates that the superconductivity decreases with the increase of compound Al. In particular, there exists the transition of superconductor to non-superconductor with the change of x. The theoretical predictions agreed well with experimental measurements.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

950-954

Citation:

Online since:

May 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Nagamatsu, N. Nakagawa, T. Muranaka et al., Nature (London) 410, 63 (2001).

Google Scholar

[2] B. Adler, in Progress in Very High Pressure Research, edited by T. Bundy (Wiley, New York, 1960).

Google Scholar

[3] N. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968).

Google Scholar

[4] M. Angst, S.L. Bud'ko, R.H.T. Wilke, and P.C. Canfield, Phys. Rev. B 71, 144512 (2005).

Google Scholar

[5] J. Kortus, O.V. Dolgov, R.K. Kermer, and A.A. Golubov, Phys. Rev. Lett. 94, 027002 (2005).

Google Scholar

[6] Y. Kong, O.V. Dolgov, O. Jepsen, and O.K. Andersen, Phys. Rev. B 64, 020501 (2001).

Google Scholar

[7] K.P. Bohnen, R. Heid, and B. Renker, Phys. Rev. Lett. 86, 5771 (2001).

Google Scholar

[8] J. Kortus, I.I. Mazin, K.D. Belashchenko et al. Phys. Rev. Lett. 86, 4656 (2001).

Google Scholar

[9] K.D. Belashchenko, M. van Schilfgaarde, and V.P. Antropov, Phys. Rev. B 64, 092503 (2001).

Google Scholar

[10] J.M. An and W. E Pickett, Phys. Rev. Lett. 86, 4366 (2001).

Google Scholar

[11] W.L. McMillan, Phys. Rev. 167, 331 (1968).

Google Scholar

[12] A.Y. Liu, I.I. Mazin, and J. Kortus, Phys. Rev. Lett. 87, 087005 (2001).

Google Scholar

[13] R. Osborn, E.A. Goremychkin, A.I. Kolesnikov, and D.G. Hinks, Phys. Rev. Lett. 87, 017005 (2001).

Google Scholar

[14] L. Romanò, A. Lascialfari, A. Rigamonti, and I. Zucca, Phys. Rev. Lett. 94, 247001 (2005).

Google Scholar

[15] S. Galambosi, J.A. Soininen, A. Mattila et al. Phys. Rev. B 71, 060504 (2005).

Google Scholar

[16] V.P. Zhukov, V.M. Silkin, E.V. Chulkov, and P.M. Echenique, Phys. Rev. B 64, 180507 (2001).

Google Scholar

[17] W. Ku, W.E. Pickett, R.T. Scalettar, and A.G. Eguiluz, Phys. Rev. Lett. 88, 057001 (2002).

Google Scholar

[18] J. Karpinski, N.D. Zhigadlo, G. Schuck et al. Phys. Rev. B 71, 174506 (2005).

Google Scholar

[19] R.J. Cava, H. W. Zandbergen, and K. Inumaru, Physica C 385, 8 (2003).

Google Scholar

[20] H.W. Zandbergen, M.Y. Wu, H. Jiang, M.A. Hayward, M.K. Haas, and R.J. Cava, Physica C. 366, 221 (2002).

Google Scholar

[21] D.J. Singh, Plane waves Pseudopotentials and the LAPW Method (Kluwer Academic, Dordrecht, 1994).

Google Scholar

[22] Anderson, Phys. Rev. B, 12, 3060 (1975).

Google Scholar

[23] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, Computer code WIEN2K (Karlheinz Schwarz, Technische Universität Wien, Austria, 1999).

Google Scholar

[24] R.W.G. Wyckoff, Crystal Structures (Wiley, New York, 1965), Vol. 1.

Google Scholar