Experimental Investigation and Optimization of Friction Stir Welding Process - A Review

Article Preview

Abstract:

Friction stir welding process parameters plays an important role in determining the quality of welded joint. The weld quality of the joint can be assessed in terms of properties such as lack of defects, tensile strength, hardness and desired microstructure. The objective of the friction stir welding process is to obtain a good welded joint with the desired strength and microstructure. This intended to present comprehensive review of application of tool geometry, different process setups computing techniques, design of experiment (DOE) and evolutionary algorithms used to obtain the good weld joint with desired weld quality.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-47

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Palanivel, R., and P. Koshy Mathews. Prediction and optimization of process parameter of friction stir welded AA5083-H111 aluminum alloy using response surface methodology., Journal of Central South University of Technology 19, no. 1 (2012): 1-8.

DOI: 10.1007/s11771-012-0964-y

Google Scholar

[2] Razal Rose, A., K. Manisekar, and V. Balasubramanian. Influences of Welding Speed on Tensile Properties of Friction Stir Welded AZ61A Magnesium Alloy., Journal of materials engineering and performance 21, no. 2 (2012): 257-265.

DOI: 10.1007/s11665-011-9889-0

Google Scholar

[3] Jayaraman, M., R. Sivasubramanian, V. Balasubramanian, and S. Babu. Influences of process parameters on tensile strength of friction stir welded cast A319 aluminium alloy joints., Metals and Materials International 15, no. 2 (2009): 313-320.

DOI: 10.1007/s12540-009-0313-3

Google Scholar

[4] Lakshminarayanan, A. K., V. Balasubramanian, and K. Elangovan. Effect of welding processes on tensile properties of AA6061 aluminium alloy joints., The International Journal of Advanced Manufacturing Technology 40, no. 3 (2009): 286-296.

DOI: 10.1007/s00170-007-1325-0

Google Scholar

[5] Lakshminarayanan, A.K., and V. Balasubramanian. Tensile and Impact Toughness Properties of Gas Tungsten Arc Welded and Friction Stir Welded Interstitial Free Steel Joints., Journal of Materials Engineering and Performance20, no. 1 (2011): 82-89.

DOI: 10.1007/s11665-010-9649-6

Google Scholar

[6] Elangovan, K., and V. Balasubramanian. Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone inAA6061 aluminium alloy., Materials & Design 29, no. 2 (2008): 362-373.

DOI: 10.1016/j.matdes.2007.01.030

Google Scholar

[7] Gopalakrishnan, S., and N. Murugan. Prediction of tensile strength of friction stir welded aluminium matrix TiCp particulate reinforced composite., Materials & Design 32, no. 1 (2011): 462-467.

DOI: 10.1016/j.matdes.2010.05.055

Google Scholar

[8] Zadpoor, Amir Abbas, Jos Sinke, and RinzeBenedictus. Global and local mechanical properties and microstructure of friction welds with dissimilar materials and/or thicknesses., Metallurgical and Materials Transactions A 41, no. 13 (2010).

DOI: 10.1007/s11661-010-0403-3

Google Scholar

[9] Yazdanian, S., Z. W. Chen, and G. Littlefair. Effects of friction stir lap welding parameters on weld features on advancing side and fracture strength of AA6060-T5 welds., Journal of materials science 47, no. 3 (2012): 1251-1261.

DOI: 10.1007/s10853-011-5747-6

Google Scholar

[10] Yazdipour, A. R., and H. JAMSHIDI AVAL. An investigation of the microstructures and properties of metal inert gas and friction stir welds in aluminum alloy 5083., Sadhana 36, no. 4 (2011): 505-514.

DOI: 10.1007/s12046-011-0032-6

Google Scholar

[11] Bayram, and TayfunSayaca. Effect of Welding Parameters on Tensile Properties and Fatigue Behavior of Friction Stir Welded 2014-T6 Aluminum Alloy., Transactions of the Indian Institute of Metals (2012): 1-10.

DOI: 10.1007/s12666-011-0069-6

Google Scholar

[12] Cole, Edward G., Axel Fehrenbacher, Edward F. Shultz, Christopher B. Smith, Nicola J. Ferrier, Michael R. Zinn, and Frank E. Pfefferkorn. Stability of the friction stir welding process in presence of workpiece mating variations., The International Journal of Advanced Manufacturing Technology (2012).

DOI: 10.1007/s00170-012-3946-1

Google Scholar

[13] Grujicic, M., G. Arakere, C-F. Yen, and B. A. Cheeseman. Computational investigation of hardness evolution during friction-stir welding of AA5083 and AA2139 aluminum alloys., Journal of materials engineering and performance20, no. 7 (2011).

DOI: 10.1007/s11665-010-9741-y

Google Scholar

[14] Gratecap, F., G. Racineux, and S. Marya. A simple methodology to define conical tool geometry and welding parameters in friction stir welding., International Journal of Material Forming 1, no. 3 (2008): 143-158.

DOI: 10.1007/s12289-008-0370-z

Google Scholar

[15] Hatamleh, Omar. The effects of laser peening and shot peening on mechanical properties in friction stir welded 7075-T7351 aluminum., Journal of Materials Engineering and Performance 17, no. 5 (2008): 688-694.

DOI: 10.1007/s11665-007-9163-7

Google Scholar

[16] Du, XingHao, and BaoLin Wu. Using two-pass friction stir processing to produce nanocrystalline microstructure in AZ61 magnesium alloy., Science in China Series E: Technological Sciences 52, no. 6 (2009): 1751-1755.

DOI: 10.1007/s11431-008-0210-x

Google Scholar

[17] Zadpoor, Amir Abbas, Jos Sinke, and RinzeBenedictus. Fracture mechanism of aluminium friction stir welded blanks., International Journal of Material Forming 2 (2009): 319-322.

DOI: 10.1007/s12289-009-0512-y

Google Scholar

[18] Babu, S., K. Elangovan, V. Balasubramanian, and M. Balasubramanian. Optimizing friction stir welding parameters to maximize tensile strength of AA2219 aluminum alloy joints., Metals and Materials International 15, no. 2 (2009): 321-330.

DOI: 10.1007/s12540-009-0321-3

Google Scholar

[19] Wang, Dan, Jun Shen, and Lin-zhi Wang. Effects of the types of overlap on the mechanical properties of FSSW welded AZ series magnesium alloy joints., International Journal of Minerals, Metallurgy, and Materials 19, no. 3 (2012): 231-235.

DOI: 10.1007/s12613-012-0543-0

Google Scholar

[20] Merklein, M., and A. Giera. Laser assisted Friction Stir Welding of drawable steel- aluminium tailored hybrids., International Journal of Material Forming 1 (2008): 1299-1302.

DOI: 10.1007/s12289-008-0141-x

Google Scholar

[21] Das, Hrishikesh, SushovanBasak, Goutam Das, and Tapan Kumar Pal. Influence of energy induced from processing parameters on the mechanical properties of friction stir welded lap joint of aluminum to coated steel sheet., The International Journal of Advanced Manufacturing Technology (2012).

DOI: 10.1007/s00170-012-4130-3

Google Scholar

[22] Pathak, N., K. Bandyopadhyay, M. Sarangi, and Sushanta Kumar Panda. Microstructure and Mechanical Performance of Friction Stir Spot- Welded Aluminum-5754 Sheets., Journal of Materials Engineering and Performance(2012): 1-14.

DOI: 10.1007/s11665-012-0244-x

Google Scholar

[23] Gupta, Rajesh Kumar, Hrishikesh Das, and Tapan Kumar Pal. Influence of Processing Parameters on Induced Energy, Mechanical and Corrosion Properties of FSW Butt Joint of 7475 AA., Journal of materials engineering and performance (2012): 1-10.

DOI: 10.1007/s11665-011-0074-2

Google Scholar

[24] Cavaliere, P., E. Cerri, L. Marzoli, and J. Dos Santos. Friction stir welding of ceramic particle reinforced aluminium based metal matrix composites., Applied Composite Materials 11, no. 4 (2004): 247-258.

DOI: 10.1023/b:acma.0000035478.71092.ec

Google Scholar

[25] Li, J. Q., and H. J. Liu. Design of tool system for the external nonrotational shoulder assisted friction stir welding and its experimental validations on 2219-T6 aluminum alloy., The International Journal of Advanced Manufacturing Technology (2012).

DOI: 10.1007/s00170-012-4353-3

Google Scholar

[26] Liu, H. J., J. Q. Li, and W. J. Duan. Friction stir welding characteristics of 2219-T6 aluminum alloy assisted by external non-rotational shoulder., The International Journal of Advanced Manufacturing Technology (2012): 1-10.

DOI: 10.1007/s00170-012-4132-1

Google Scholar

[27] Abd El-Hafez, H. Mechanical Properties and Welding Power of Friction Stirred AA2024-T35 Joints., Journal of materials engineering and performance 20, no. 6 (2011): 839-845.

DOI: 10.1007/s11665-010-9709-y

Google Scholar

[28] Asadi, P., M. K. BesharatiGivi, N. Parvin, A. Araei, M. Taherishargh, and S. Tutunchilar. On the role of cooling and tool rotational direction on microstructure and mechanical properties of friction stir processed AZ91., The International Journal of Advanced Manufacturing Technology (2012).

DOI: 10.1007/s00170-012-3971-0

Google Scholar

[29] Zadpoor, A. A., J. Sinke, and R. Benedictus. The effects of friction stir welding on the mechanical properties and microstructure of 7000 series aluminium tailor-welded blanks., International Journal of Material Forming 1 (2008): 1311-1314.

DOI: 10.1007/s12289-008-0144-7

Google Scholar

[30] Gratecap, F., M. Girard, S. Marya, and G. Racineux. Exploring material flow in frictionstir welding: Tool eccentricity and formation of banded structures., International journal of material forming (2012): 1-9.

DOI: 10.1007/s12289-010-1008-5

Google Scholar

[31] Astarita, A., A. Squillace, A. Scala, and A. Prisco. On the Critical Technological Issues of Friction Stir Welding T-Joints of Dissimilar Aluminum Alloys., Journal of materials engineering and performance (2012): 1-9.

DOI: 10.1007/s11665-011-0073-3

Google Scholar

[32] Jonckheere, Caroline, Bruno de Meester, CédricCassiers, Martin Delhaye, and AudeSimar. Fracture and mechanical properties of friction stir spot welds in 6063-T6 aluminum alloy., The International Journal of Advanced Manufacturing Technology (2012).

DOI: 10.1007/s00170-011-3795-3

Google Scholar

[33] Malarvizhi, S., and V. Balasubramanian. Effectsof Welding Processes and Post-Weld AgingTreatment on Fatigue Behavior of AA2219Aluminium Alloy Joints., Journal of Materials Engineering and Performance 20, no. 3 (2011): 359-367.

DOI: 10.1007/s11665-010-9682-5

Google Scholar

[34] Liu, H. J., J. C. Feng, H. Fujii, and K. Nogi. Wear characteristics of a WC Co tool in friction stir welding of AC4A+ 30vol% SiCp composite., International journal of machine tools and manufacture 45, no. 14 (2005): 1635-1639.

DOI: 10.1016/j.ijmachtools.2004.11.026

Google Scholar

[35] Heurtier, P., M. J. Jones, Christophe Desrayaud, Julian H. Driver, Frank Montheillet, and D. Allehaux. Mechanical and thermal modelling of friction stir welding., Journal of materials processing technology 171, no. 3 (2006): 348-357.

DOI: 10.1016/j.jmatprotec.2005.07.014

Google Scholar

[36] Giles, Tanya L., Keiichiro Oh-Ishi, Alexander P. Zhilyaev, SrinivasanSwaminathan, Murray W. Mahoney, and Terry R. McNelley. The Effect of Friction Stir Processing on the Microstructure and Mechanical Properties of an Aluminum Lithium Alloy., Metallurgical and Materials Transactions A 40, no. 1 (2009).

DOI: 10.1007/s11661-008-9698-8

Google Scholar

[37] Sinha, Preetish, S. Muthukumaran, R. Sivakumar, and S. K. Mukherjee. Condition monitoring of first mode of metal transfer in friction stir welding by image processing techniques., The International Journal of Advanced Manufacturing Technology 36, no. 5 (2008).

DOI: 10.1007/s00170-006-0854-2

Google Scholar

[38] process parameters and tool geometry on mechanical properties of friction stir welded aluminum lap joints. "International Journal of Material Forming 3 (2010): 1011-1014.

DOI: 10.1007/s12289-010-0941-7

Google Scholar