Facile Synthesis of Nickel Based Alloy Microtube by Using Spider Silk as Template and its Catalytic Property

Article Preview

Abstract:

Nickel based alloy microtube was prepared by utilizing spider silk as template via electroless deposition. The spider silk fiber was choosed as template which can be removed easily by heat-treatment and dissolving with sodium hydroxide solution. The nickel based alloy microtube was characterized by TG-DSC, XRD, SEM and EDX. SEM show that the microtube is about 600nm in outer diameter, 400 nm in inner diameter and more than 20 μm in the length. The catalytic activity of different structure Ni-P products was studied in liquid-phase hydrogenation of nitrobenzene reaction. The results show that the catalytic property of amorphous nickel based alloy is better than crystalline nickel based alloy and Raney Ni.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

170-175

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Sun Y.G., Mayers B., Xia Y.N., Metal Nanostructures with Hollow Interiors, Adv. Mater. 15(2003) 641-646.

DOI: 10.1002/adma.200301639

Google Scholar

[2] Brumlik C.J., Menon V.P., Mrtin C.R., J., Template Synthesis of Metal Microtubule Ensembles Utilizing Chemical, Electr°Chemical and Vacuum Deposition Techniques, Mater. Res. 9(1994) 1174-1183.

DOI: 10.1557/jmr.1994.1174

Google Scholar

[3] Tremel W., Inorganic Nanotubes, Angew Chem. Int. Ed. 38(1999) 2175-2179.

DOI: 10.1002/(sici)1521-3773(19990802)38:15<2175::aid-anie2175>3.0.co;2-j

Google Scholar

[4] Kjeld J.C., Bommel Dr. , Arianna Friggeri Dr., Seiji Shinkai Prof., Organic Templates for the Generation of Inorganic Materials Angew, Chem. Int. Ed. 42(2003) 980-999.

DOI: 10.1002/anie.200390284

Google Scholar

[5] Ijima S., Helical microtubules of graphitic carbon. Nature. 354(1991) 56-58.

Google Scholar

[6] Ghadiri M. R., Granja J. R., Buehler L. K., Artificial Transmembrane Ion Channels from Self-assembling Peptide Nanotubes, Nature. 369(1994) 301-304.

DOI: 10.1038/369301a0

Google Scholar

[7] Qiu H.J., Wan M.X., Matthews B., Dai L.M., Conducting Polyaniline Nanotubes by Template-Free Polymerization, Macromolecules. 34(2001) 675-677.

DOI: 10.1021/ma001525e

Google Scholar

[8] Xie G.W., Wang Z. B., Cui Z. L., Templated Synthesis of Metal Nanotubes via Electroless Deposition, Mater. Lett. 61(2007) 2641-2643.

DOI: 10.1016/j.matlet.2006.10.012

Google Scholar

[9] Xie G.W., Wang Z.B., Cui Z.L., Ni–Fe–Co–P Coatings on Coiled Carbon Nanofibers, Carbon. 43(2005) 3181-3183.

DOI: 10.1016/j.carbon.2005.07.024

Google Scholar

[10] Chang L.N., Zhang Y.Z., Zhang X.D., Influence of Electrospinning Parameters on the Regenerated Silk Fibroin/Chitosan Nanofiber Morphology and Diameter, Synthetic Fiber in China. 35(2006) 12-14.

Google Scholar

[11] Li H., Zhao Q., Wan Y., Dai W., Qiao M., Self-assembly of mesoporous Ni-B amorphous alloy catalysts, J. Catal. 244(2006) 251-254.

DOI: 10.1016/j.jcat.2006.08.025

Google Scholar

[12] Mahata N., Cunha A. F., Orfao J. J. M., Figueiredo J. L., Hydrogenation of nitrobenzene over nickel nanoparticles stabilized by filamentous carbon, Appl. Catal. A: Gen. 351(2008) 204-209.

DOI: 10.1016/j.apcata.2008.09.015

Google Scholar

[13] Powder Diffracrion File [DB]. Swarthmore (USA): JCPDS Intemarional centre for diffraction data. (2000).

Google Scholar