[1]
E. Susila, R.D. Hryciw, Large displacement FEM modelling of the cone penetration test (CPT) in normally consolidated sand, Int. J. Numer. Anal. Meth. Geomech. 27 (2003) 585-602.
DOI: 10.1002/nag.287
Google Scholar
[2]
W. Huang, D. Sheng, S.W. Sloan, H.S. Yu, Finite element analysis of cone penetration in cohesionless soil, Computers and Geotechnics 31 (2004) 517-528.
DOI: 10.1016/j.compgeo.2004.09.001
Google Scholar
[3]
J. Dijkstra, W. Broere, A.F. van Tol, Numerical simulation of the installation of a displacement pile in sand, In: Eds. Pande, Pietruczak, Numerical Models in Geomechanics NUMOG X, Taylor and Francis, 2007, 461-466.
DOI: 10.1201/noe0415440271.ch67
Google Scholar
[4]
J. Yi, Centrifuge and numerical modelling of sand compaction pile installation, Ph.D. thesis, Department of Civil Engineering, National University of Singapore, (2009).
Google Scholar
[5]
M. Jamiolkowski, C.C. Ladd, J. T, Germaine, R. Lancellotta, New developments in field and laboratory testing of soils, Theme lecture In: Proc. 11th Int. Conf. Soil. Mech. Found. Engng, San Francisco, 1985, 57-156.
Google Scholar
[6]
M.D. Bolton, M.W. Gui, J. Garnier, J.F. Corte, G. Bagge, J. Laue, R. Renzi, Centrifuge cone penetration tests in sand, Géotechnique, 49 (1999) 543-552.
DOI: 10.1680/geot.1999.49.4.543
Google Scholar
[7]
G.P. Kouretzis, D. Sheng, D. Wang, Numerical simulation of cone penetration testing using a new critical state constitutive model for sand, submitted to Computers and Geotechnics (2013).
DOI: 10.1016/j.compgeo.2013.11.002
Google Scholar
[8]
P.A. Vermeer, A double hardening model for sand, Géotechnique 28 (1978) 413-433.
DOI: 10.1680/geot.1978.28.4.413
Google Scholar
[9]
R. Nova, M.D. Wood, A constitutive model for sand in triaxial compression, Int. J. Numer. Anal. Meth. Geomech. 3 (1979) 255-278.
DOI: 10.1002/nag.1610030305
Google Scholar
[10]
Y.F. Dafalias, Bounding surface plasticity. I: mathematical foundation and hypoelasticity, Journal of Engineering Mechanics ASCE, 112-EM9 (1986) 966-987.
DOI: 10.1061/(asce)0733-9399(1986)112:9(966)
Google Scholar
[11]
A. Asaoka, M. Nakano, T. Noda, Superloading yield surface concept for highly structured soil behaviour, Soils and Foundations, 40-2 (2000) 99-110.
DOI: 10.3208/sandf.40.2_99
Google Scholar
[12]
Abaqus– User's Manual – version 6. 11. Dassault Systems Simulia Corp. (2011).
Google Scholar
[13]
M.D. Bolton, M.W. Gui, The study of relative density and boundary effects for cone penetration tests in centrifuge. Report CUED/D-SOILS/TR256, Cambridge University Engineering Department, UK, (1993).
Google Scholar
[14]
Y.P. Yao, D.A. Sun, T. Luo, A critical state model for sands dependent on stress and density, Int. J. Numer. Anal. Meth. Geomech. 28 (2004) 323-337.
DOI: 10.1002/nag.340
Google Scholar
[15]
D. Loukidis, R. Salgado, Analysis of the shaft resistance of non-displacement piles in sand. Géotechnique, 58-4 (2008) 283-296.
DOI: 10.1680/geot.2008.58.4.283
Google Scholar