Study on Density Functional Theory of Zn1-xMgxO Alloy

Article Preview

Abstract:

Geometric structure and electronic structures of Zn1-xMgxO alloy under different Mg doped concentrations have been investigated by performing the first-principle calculations based on density functional theory under the generalized gradient approximation (GGA). The calculated results show that there is substantial change in electronic structure of Mg doped MgxZn1-xO alloy, with the constant increase of Mg content, cell parameter a shall be on the gradual increase, with c on gradual decrease and band gap width of MgxZn1-xO alloy on the increase. The research findings show that the position of conduction band bottom is dependent on Mg 2p and Zn 4s. Mg doping results in drift of Mg 2p and Zn 4s toward high energy region, being the root cause for the increase in band gap width,the research results in the paper are in accordance with other experimental results. The above results provide theoretical guidance to the preparation of Zn1-xMgxO alloy in experiment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

177-180

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Ohtomo, M. Kawasaki, T. Koida, et al: Appl. Phys. Lett, Vol. 72 (1998), p.2466.

Google Scholar

[2] W.L. Park, G.C. Yi and H.M. Jany: Appl. Phys. Lett, Vol. 79 (2001): p. (2022).

Google Scholar

[3] S. Choopun, R.D. Vispute, W. Yang, et al: Appl. Phys. Lett, Vol. 80 (2002), p.1529.

Google Scholar

[4] J. Liang, H.Z. Wu, N.B. Chen, et al: Semicond. Sci. Technol, Vol. 20 (2005), p. L15.

Google Scholar

[5] Z. Vashaei, T. Minegishi, H. Suzuki, et al: J. Appl. Phys, Vol. 98 (2005), p.054911.

Google Scholar

[6] S. Muthukumar, J. Zhong, Y. Chen, et al: Appl. Phys. Lett, Vol. 82 (2003), p.742.

Google Scholar

[7] H.S. Tanaka, S.G. Fujita: Appl. Phys. Lett, Vol. 86(2005), p.192911.

Google Scholar

[8] G.H. Ning, X.P. Zhao and J. Li: Optic. Mater, Vol. 27 (2004), p.1.

Google Scholar

[9] T. Makino, Y. Segawa, M. Kawasaki, et al: Appl. Phys. Lett, Vol. 78 (2001), p.1237.

Google Scholar

[10] C.H. Choi and S.H. Kim: J. Cryst. Growth Vol. 28 (2005), p.3170.

Google Scholar

[11] S. J. Clark, M. D. Segall and C. J. Pickard: Z. Kristallogr, Vol. 220 (2005), p.567.

Google Scholar

[12] Y.S. Chang, C.T. Chien, C.W. Chen, et al: J. Appl. Phys, Vol. 101 (2007), p.033502.

Google Scholar

[13] N. B. Chen and C. H. Sui: Mater. Sci. Eng, Vol. B126 (2006), p.16.

Google Scholar

[14] A. Schleife, F. Fuchs, J. Furthmüller, et al: Phys. Rev. B, Vol. 73 (2006), p.245212.

Google Scholar

[15] Y. Matsumoto, M. Murakami, Z .W. Jin, et al: Jpn. J. Appl. Phys, Vol. 38 (1999), p. L603.

Google Scholar

[16] P. Hohenberg and W. Kohn: Phys. Rev. B, Vol. 864 (1964), p.136.

Google Scholar