[1]
Vapnik V. The nature of statistical learning theory[M]. springer, (2000).
Google Scholar
[2]
Mao Y, Zhou X, Pi D, et al. Multiclass cancer classification by using fuzzy support vector machine and binary decision tree with gene selection[J]. Journal of Biomedicine and Biotechnology, 2005, 2005(2): 160-171.
DOI: 10.1155/jbb.2005.160
Google Scholar
[3]
Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural processing letters, 1999, 9(3): 293-300.
Google Scholar
[4]
Monroy I, Benitez R, Escudero G, et al. A semi-supervised approach to fault diagnosis for chemical processes[J]. Computers & Chemical Engineering, 2010, 34(5): 631-642.
DOI: 10.1016/j.compchemeng.2009.12.008
Google Scholar
[5]
Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of computer and system sciences, 1997, 55(1): 119-139.
DOI: 10.1006/jcss.1997.1504
Google Scholar
[6]
KLEMA J, NOVAKOVA L, KAREL F, STEPANKOVA O. Sequential data mining: A comparative case study in development of atherosclerosis risk factors, IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., 2008, vol. 38, no. 1: 3-15.
DOI: 10.1109/tsmcc.2007.906055
Google Scholar
[7]
BUDALAKOTI S, SRIVASTAVA A, AKELLA R. Discovering atypical flights in sequences of discrete flight parameters, in Proc. 2006, IEEE Aerospace. Conf., pp: 1-8.
DOI: 10.1109/aero.2006.1656109
Google Scholar
[8]
FINK E, PRATT K. B, GANDHI H.S. Indexing of Time Series by Major Minima and Maxima. Proc of the IEEE Int Conf on Systems, Man, and Cybernetics. Washington. DC: IEEE, 2003: 2332-2335.
DOI: 10.1109/icsmc.2003.1244232
Google Scholar
[9]
DAVID L. Inductive System Health Monitoring. Proceedings of the International Conference on Artificial Intelligence, IC-AI 04, Volume 2 & Proceedings of the International Conference on Machine Learning; Models, Technologies & Applications, MLMTA , 04, June 21-24, 2004, Las Vegas, Nevada, USA.
Google Scholar
[10]
Berndt Donald J, Clifford James. Using dynamic time warping to find patterns in time series[C]. In Proceedings of the KDD Workshop, Seattle, WA. 1994: 359-370.
Google Scholar
[11]
SCHWABACHER M. Machine Learning for Rocket Propulsion Health Monitoring. Proceedings of the SAE World Aerospace Congress, Dallas, TX, (2005).
Google Scholar
[12]
DAS K, SCHNEIDER J. Detecting anomalous records in categorical datasets. In KDD'07: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2007, pp: 220-229.
DOI: 10.1145/1281192.1281219
Google Scholar
[13]
DAVID L. I. Data Mining Applications for Space Mission Operations System Health Monitoring, NASA Ames Research Center, Moffett Field, California, 94035, (2008).
Google Scholar
[14]
PARK H, MACKEY R, JAMES M, ZAK M, KYNARD M, SEBGHATI J, and GREENE W. Analysis of Space Shuttle Main Engine Data Using Beacon-based Exception Analysis for Multi- Missions. Proceedings of the IEEE Aerospace Conference, IEEE, New York, Vol. 6, March 9-16, 2002: 6-2835 - 6-2844.
DOI: 10.1109/aero.2002.1036123
Google Scholar
[15]
CHANDOLA V, BANERJEE A, KUMAR V. Anomaly detection: A survey. ACM Computing Surveys, 2009, 41(3): 1-58.
DOI: 10.1145/1541880.1541882
Google Scholar