A Survey on Motion Capture Data Retrieval

Article Preview

Abstract:

With the rapid development of motion capture technology, large motion capture databases are established. How to effectively retrieve the motions from huge amounts of motion data has become a hot topic in computer animation. In this paper, we give a survey on current motion capture data retrieval methods and point out some still existing problems at the end.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2944-2947

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Müller, T. Röder, and M. Clausen, Efficient content-based retrieval of motion capture data, in ACM Transactions on Graphics (TOG), vol. 24, no. 3. ACM, 2005, p.677–685.

DOI: 10.1145/1073204.1073247

Google Scholar

[2] M. Müller and T. Röder, Motion templates for automatic classification and retrieval of motion capture data, in Proceedings of the 2006 ACMSIGGRAPH/Eurographics symposium on Computer animation. Eurographics Association, 2006, p.137–146.

Google Scholar

[3] F. Liu, Y. Zhuang, F. Wu, and Y. Pan, 3d motion retrieval with motion index tree, Computer Vision and Image Understanding, vol. 92, no. 2, p.265–284, (2003).

DOI: 10.1016/j.cviu.2003.06.001

Google Scholar

[4] Z. Deng, Q. Gu, and Q. Li, Perceptually consistent example-based human motion retrieval, in Proceedings of the 2009 symposium on Interactive 3D graphics and games. ACM, 2009, p.191–198.

DOI: 10.1145/1507149.1507181

Google Scholar

[5] D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt, Fast pattern matching in strings, SIAM journal on computing, vol. 6, no. 2, p.323–350, (1977).

DOI: 10.1137/0206024

Google Scholar

[6] C. Li, S. Zheng, and B. Prabhakaran, Segmentation and recognition of motion streams by similarity search, ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP), vol. 3, no. 3, p.16, (2007).

DOI: 10.1145/1236471.1236475

Google Scholar

[7] Y. Jin and B. Prabhakaran, Knowledge discovery from 3d human motion streams through semantic dimensional reduction, ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP), vol. 7, no. 2, p.9, (2011).

DOI: 10.1145/1925101.1925104

Google Scholar

[8] P. Glardon, R. Boulic, and D. Thalmann, A coherent locomotion engine extrapolating beyond experimental data, Proceedings of CASA, vol. 4, p.73–84, (2004).

Google Scholar

[9] Glardon P, Boulic R, Thalmann D. PCA-based walking engine using motion capture data[C]. Computer Graphics International, 2004. Proceedings. IEEE, 2004: 292-298.

DOI: 10.1109/cgi.2004.1309224

Google Scholar

[10] G. Liu, J. Zhang, W. Wang, and L. McMillan, A system for analyzing and indexing human-motion databases, in Proceedings of the 2005 ACM SIGMOD international conference on Management of data. ACM, 2005, p.924–926.

DOI: 10.1145/1066157.1066290

Google Scholar

[11] K. Yang and C. Shahabi, A pca-based similarity measure for multivariate time series, in Proceedings of the 2nd ACM international workshop on Multimedia databases. ACM, 2004, p.65–74.

DOI: 10.1145/1032604.1032616

Google Scholar

[12] K. Forbes and E. Fiume, An efficient search algorithm for motion data using weighted pca, in Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation. ACM, 2005, p.67–76.

DOI: 10.1145/1073368.1073377

Google Scholar

[13] S. Wu, S. Xia, Z. Wang, and C. Li, Efficient motion data indexing and retrieval with local similarity measure of motion strings, The Visual Computer, vol. 25, no. 5-7, p.499–508, (2009).

DOI: 10.1007/s00371-009-0345-1

Google Scholar

[14] Y. Sakamoto, S. Kuriyama, and T. Kaneko, Motion map: image-based retrieval and segmentation of motion data, in Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation. Eurographics Association, 2004, p.259–266.

DOI: 10.1145/1028523.1028557

Google Scholar

[15] C. Sun, I. Junejo, and H. Foroosh, Motion retrieval using low-rank subspace decomposition of motion volume, in Computer Graphics Forum, vol. 30, no. 7. Wiley Online Library, 2011, p.1953–(1962).

DOI: 10.1111/j.1467-8659.2011.02048.x

Google Scholar

[16] M. Zhu, H. Sun, and Z. Deng, Quaternion space sparse decomposition for motion compression and retrieval, in Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 2012, p.183–192.

Google Scholar

[17] H. Kadu, M. Kuo, and C. -C. J. Kuo, Human motion classification and management based on mocap data analysis, in Proceedings of the 2011 joint ACM workshop on Human gesture and behavior understanding. ACM, 2011, p.73–74.

DOI: 10.1145/2072572.2072594

Google Scholar

[18] R. Laban and L. Ullmann, The mastery of movement., (1971).

Google Scholar

[19] Y. Wakayama, S. Okajima, S. Takano, and Y. Okada, Iec-based motion retrieval system using laban movement analysis, in Knowledge-Based and Intelligent Information and Engineering Systems. Springer, 2010, p.251–260.

DOI: 10.1007/978-3-642-15384-6_27

Google Scholar

[20] S. Okajima, Y. Wakayama, and Y. Okada, Human motion retrieval system based on lma features using interactive evolutionary computation method, in Innovations in Intelligent Machines–2. Springer, 2012, p.117–130.

DOI: 10.1007/978-3-642-23190-2_9

Google Scholar

[21] M. Kapadia, I. -k. Chiang, T. Thomas, N. I. Badler, J. T. Kider Jr et al., Efficient motion retrieval in large motion databases, in Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. ACM, 2013, p.19–28.

DOI: 10.1145/2448196.2448199

Google Scholar