Structural, Optical and Magnetic Properties of W-Doped TiO2

Article Preview

Abstract:

Based on the density functional theory method, the ab initio calculation with GGA+U was performed to investigate the electronic structure and properties of W-doped TiO2. The results indicated that W-doping induced ferromagnetism and shifted the absorption spectra to visible light region. The ferromagnetism derived from the spin-split of O 2p and W 5d caused by p–d orbit hybridization. Several impurity bands under the conduction band decreased the band gap.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

330-334

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.J. Chen, E. Stathatos, D.D. Dionysiou, Surf. Coat. Technol. 202 (2008) 1944-(1950).

Google Scholar

[2] P. Du, A. Bueno-López, M. Verbaas, et al. 260 (2008) 75-80.

Google Scholar

[3] L.C. Chen, F.R. Tsai, S.H. Fang, et al., Acta 54 (2009) 1304-1311.

Google Scholar

[4] S. Ghosh, B. Sanyal, G.P. Das, Appl. Phys. Lett. 96 (2010) 052506.

Google Scholar

[5] K. Nagaveni, M.S. Hegde, G. Madras, J. Phys. Chem. B 108 (2004) 20204–20212.

Google Scholar

[6] J. Zhu, Z. Deng, F. Chen, J. Zhang, H. Chen, M. Anpo, J. Huang, L. Zhang, Appl. Catal. B 62 (2006) 329–335.

Google Scholar

[7] J. Yin, X. Zhao, J. Phys. Chem. B 110 (2006) 12916–12925.

Google Scholar

[8] Ewelina Grabowska, Janusz W. Sobczak, Maria Gazda, Adriana Zaleska, Appl. Catal. B: Environment 117–118(2012) 351-359.

Google Scholar

[9] Weradeach Sangkhun, Laksana Laokiat, Visanu Tanboonchuy, Pummarin Khamdahsag, Nurak Grisdanurak, Superlattice Microst. 52 (2012) 632–642.

DOI: 10.1016/j.spmi.2012.06.026

Google Scholar

[10] Hua-Nan Guan, De-Fu Chi, Jia Yu, Si-Yu Zhang. Colloid Surface B: Biointerfaces 83 (2011) 148–154.

Google Scholar

[11] Weradeach Sangkhun, Laksana Laokiat, Visanu Tanboonchuy et. al. Superlattices and Microstructures 52 (2012) 632–642.

DOI: 10.1016/j.spmi.2012.06.026

Google Scholar

[12] Kaushik Pal, JoySankarRoy, TapasPalMajumder et. al. J. LUMIN. 136 (2013) 278–284.

Google Scholar

[13] N. Hong, W. Prellier, J. Sakai, A. Ruyter, J. Appl. Phys. 95 (2004) 7378.

Google Scholar

[14] J.Y. Kim, et al., Phys. Rev. Lett. 90 (2003) 017401.

Google Scholar

[15] P. Stampe, R. Kennedy, Y. Xin, J. Parker, J. Appl. Phys. 93 (2003) 7864.

Google Scholar

[16] Y.G. Joh, H.D. Kim, B.Y. Kim, S.J. Woo, S.H. Moon, J.H. Cho, E.C. Kim, D.H. Kim, C.R. Cho, J. Korean Phys. Soc. 44 (2004) 360.

Google Scholar

[17] J.M.D. Coey, CURR. OPIN. SOLID ST. M. 10 (2006) 83–92.

Google Scholar

[18] M.G. Brik, I. Sildos, V. Kiisk, Phys. B 405(2010) 2450–2456.

Google Scholar

[19] W. Shi, Q. Chen, Y. Xu, D. Wu, C. Huo, Appl. Surf. Sci. 257 (2011) 3000.

Google Scholar

[20] J. Sun, H.T. Wang, J. He, Y. Tian, Phys. Rev. B 71 (2005) 125132.

Google Scholar

[21] B.G. Pfrommer, M. Cote, S.G. Louie, M.L. Cohen, B. Pfrommer, J. Comput. Phys. 131 (1997) 233.

Google Scholar

[22] Asahi R, Taga Y,Mannstadt W, et a1. Phys. Rev. B 61(2000)7459-7465.

Google Scholar

[23] S.M. Baizaee, N. Mousavi, Phys. B 404 (2009) 2111.

Google Scholar

[24] Soyeon An, Sunghoon Park, Hyunsung Ko, Chongmu Lee, Ceramics International 40 (2014) 1423-1429.

Google Scholar

[25] T. Dietl, H. Ohono, F. Matsukura, J. Cibert, D. Ferrand, Science 287 (2000) 1019.

Google Scholar

[26] A.C. Durst, R.N. Bhatt, P.A. Wolff, Phys. Rev. B 65 (2002) 235205.

Google Scholar

[27] Y.J. Zhao, T. Shishidou, A.J. Freeman, Phys. Rev. Lett. 90 (2003) 047204.

Google Scholar

[28] P.M. Krstajic ´ , F.M. Peeters, V.A. Ivanov, V. Fleurov, K. Kikoin, Phys. Rev. B 70 (2004) 195215.

Google Scholar

[29] H. Akai, Phys. Rev. Lett. 81 (1998) 3002.

Google Scholar

[30] QiLi Chen, Bo Li, Guang Zheng, KaiHua He, AnShou Zheng. Physica B 2011, 406: 3841-3846.

Google Scholar

[31] A.K.L. Sajjad, S. Shamaila, B. Tian, F. Chen, J. Zhang, Appl. Catal. B: Environ. 2009, 91: 397-405.

Google Scholar