[1]
MARZAT J, PIET-LAHANIER H, DAMONGEOT F, WALTER E. Model-based fault diagnosis for aerospace systems: a survey[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, (2012).
DOI: 10.1177/0954410011421717
Google Scholar
[2]
ANGIULLI F, BASTA S, LODI S, SARTORI C. A Distributed Approach to Detect Outliers in Very Large Data Sets. In Proceedings of Euro-Par'10, 2010, pp: 329-340.
DOI: 10.1007/978-3-642-15277-1_32
Google Scholar
[3]
TRAINA C, FILHO R, TRAINA A, VIEIRA M, FALOUTSOS C. The Omni Family of All-purpose Access Methods: A Simple and Effective Way to Make Similarity Search More Efficient, The VLDB Journal, 2007, vol. 16: 483-505.
DOI: 10.1007/s00778-005-0178-0
Google Scholar
[4]
LEMBESSIS E, ANTONOPOULOS G, KING R, HALATSIS C, & TORRES J. CASSANDRA: an on-line expert system for fault prognosis. Proc. the 5th CIM Europe Conference on Computer Integrated Manufacturing, 1989: 371–377.
Google Scholar
[5]
SCHWABACHER M.A. A survey of Data-Driven prognostics. AIAA Infotech@Aerospace Conference, (2005).
DOI: 10.2514/6.2005-7002
Google Scholar
[6]
DAVID L. I. Data Mining Applications for Space Mission Operations System Health Monitoring, NASA Ames Research Center, Moffett Field, California, 94035, (2008).
Google Scholar
[7]
CHANDOLA V, BANERJEE A, KUMAR V. Anomaly detection: A survey. ACM Computing Surveys, 2009, 41(3): 1-58.
DOI: 10.1145/1541880.1541882
Google Scholar
[8]
PARK H, MACKEY R, JAMES M, ZAK M, KYNARD M, SEBGHATI J, and GREENE W. Analysis of Space Shuttle Main Engine Data Using Beacon-based Exception Analysis for Multi- Missions. Proceedings of the IEEE Aerospace Conference, IEEE, New York, Vol. 6, March 9-16, 2002: 6-2835 - 6-2844.
DOI: 10.1109/aero.2002.1036123
Google Scholar
[9]
SCHWABACHER M. Machine Learning for Rocket Propulsion Health Monitoring. Proceedings of the SAE World Aerospace Congress, Dallas, TX, (2005).
Google Scholar
[10]
DAS K, SCHNEIDER J. Detecting anomalous records in categorical datasets. In KDD'07: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2007, pp: 220-229.
DOI: 10.1145/1281192.1281219
Google Scholar
[11]
DAVID L. Inductive System Health Monitoring. Proceedings of the International Conference on Artificial Intelligence, IC-AI 04, Volume 2 & Proceedings of the International Conference on Machine Learning; Models, Technologies & Applications, MLMTA , 04, June 21-24, 2004, Las Vegas, Nevada, USA.
Google Scholar
[12]
Berndt Donald J, Clifford James. Using dynamic time warping to find patterns in time series[C]. In Proceedings of the KDD Workshop, Seattle, WA. 1994: 359-370.
Google Scholar
[13]
KLEMA J, NOVAKOVA L, KAREL F, STEPANKOVA O. Sequential data mining: A comparative case study in development of atherosclerosis risk factors, IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., 2008, vol. 38, no. 1: 3-15.
DOI: 10.1109/tsmcc.2007.906055
Google Scholar
[14]
FINK E, PRATT K. B, GANDHI H.S. Indexing of Time Series by Major Minima and Maxima. Proc of the IEEE Int Conf on Systems, Man, and Cybernetics. Washington. DC: IEEE, 2003: 2332-2335.
DOI: 10.1109/icsmc.2003.1244232
Google Scholar
[15]
BUDALAKOTI S, SRIVASTAVA A, AKELLA R. Discovering atypical flights in sequences of discrete flight parameters, in Proc. 2006, IEEE Aerospace. Conf., pp: 1-8.
DOI: 10.1109/aero.2006.1656109
Google Scholar
[16]
RAMASWAMY S, RASTOGI R, SHIM K. Efficient Algorithms for Mining Outliers from Large Data Sets. SIGMOD Rec., 2000, 29(2): 427-438.
DOI: 10.1145/335191.335437
Google Scholar
[17]
SALVADOR S, CHAN P. FastDTW: Toward accurate dynamic time warping in linear time and space. 3rd Workshop on Mining Temporal and Sequential Data, ACM KDD'04. Seattle, Washington, August, (2004).
Google Scholar
[18]
YANG K, SHAHABI C. A PCA-based Similarity Measure for Multivariate Time Series, " in Proceedings of MMDB, 04, 2004, pp: 65-74.
Google Scholar
[19]
JEFFREY D, SANJAY G. MapReduce: Simplified Data Processing on Large Clusters. In proc. of the 6th OSDI December, 2004, pp: 137-150.
Google Scholar
[20]
FALOUTSOS C, RANGANATHAN M, MANOLOPOULOS Y. Fast Subsequence Matching in Time-series Databases, SIGMOD Rec., 1994, vol. 23, no. 2: 419-429.
DOI: 10.1145/191843.191925
Google Scholar