[1]
P. N. Belhumeur, J. P. Hespanha and D. J Kriegman. Eigenfaces versus fisherfaces: Recognition using class specific linear projection, , IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 5, pp.711-720, July. (1997).
DOI: 10.1109/34.598228
Google Scholar
[2]
I. T. Jolliffe, Principle Component Analysis. New York, NY, USA: Springer, (1986).
Google Scholar
[3]
P. Comon, Independent component analysis: a new concept, Signal Processing, vol. 36, no. 3, pp.287-314, April. (1994).
DOI: 10.1016/0165-1684(94)90029-9
Google Scholar
[4]
T. Cox and M. Cox , Multidimensional Scaling, , London, U.K.: Chapman & Hall, (1994).
Google Scholar
[5]
S. T. Roweis and L. K. Saul, Nonlinear dimensionality reduction by locally linear embedding, Science, vol. 290, no. 5500, pp.2323-2326, Sep. (2000).
DOI: 10.1126/science.290.5500.2323
Google Scholar
[6]
J. B. Tenenbaum , V. de Silva, and J. C. Langford, A global geometric framework for nonlinear dimensionality reduction, , Science, vol. 290, no. 5500, pp.2319-2323, Dec (2000).
DOI: 10.1126/science.290.5500.2319
Google Scholar
[7]
Xin Geng, De and chuan Zhan, Supervised Nonlinear Dimensionality Reduction for Visualization and Classification, , IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2005, 35, Issue 6, pp.1098-1107.
DOI: 10.1109/tsmcb.2005.850151
Google Scholar
[8]
Rui Xiao, Qijun Zhao, David Zhang and Pengfei Shi, Facial expression recognition on multiple manifolds. , Pattern Recognition 2011, 44 (1) : 107-116.
DOI: 10.1016/j.patcog.2010.07.017
Google Scholar
[9]
Zhao lian-Wei, Luo SW, Zhao YC, Study on the Low-Dimensional Embedding and the Embedding dimensionality of Manifold of High-Dimensional Data, , Journal of Software, Vol. 16, No. 8, 2005, pp: 1423-1430.
DOI: 10.1360/jos161423
Google Scholar
[10]
D. F. Specht, A general regression neural network, , IEEE Trans. Neural Networks, vol. 2, no. 6, pp.568-576, November. (1991).
DOI: 10.1109/72.97934
Google Scholar
[11]
C. Blake, E. Keogh, and C J. Merz, UCI repository of machine learning databases, , http: /www. ics. uci/~mlearn/ML Repository. html, Department of Information and Computer Science, University of California, Irvine, CA. (1998).
Google Scholar