[1]
S. F. Boll, Suppression of acoustic noise in speech using spectral subtraction, [J]. IEEE Trans. ASSP, vol. 27, No. 2, pp. l13-120, (1979).
DOI: 10.1109/tassp.1979.1163209
Google Scholar
[2]
M. Berouti, R. Schwartz, J. Makhoul, Enhancement of Speech Corrupted by Acoustic Noise, [C]. Proceeding of 1979 IEEE, ICASSP, pp.208-211, (1979).
DOI: 10.1109/icassp.1979.1170788
Google Scholar
[3]
Y. Epharim, D. Malah, Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator, [J]. IEEE. Trans. Acoustic, Speech Signal Processing, vol. 32, No. 6, pp.1109-1121, (1984).
DOI: 10.1109/tassp.1984.1164453
Google Scholar
[4]
P. Lochwood, J. Boundy, Experiments with a Nonlinear Spectral Subtractor(NSS), Hidden Markov Models and Projection, for Robust Recongnition in Cars, [J]. Speech Commun., vol. 11, No. 6, pp.215-228, (1992).
DOI: 10.1016/0167-6393(92)90016-z
Google Scholar
[5]
Y. Ephraim, A minimum mean square error approach for speech enhancement, [J]. Acoustics, Speech, and Signal Processing, vo1. 2, pp.829-832, (1990).
DOI: 10.1109/icassp.1990.115960
Google Scholar
[6]
Liu Zhibin, Xu Naiping, Speech enhancement based on minimum mean-square error short-time spectral estimation and its realization, [C]. IEEE International conference on intelligent processing system, pp.1794-1797, Oct. (1997).
DOI: 10.1109/icips.1997.669365
Google Scholar
[7]
R. Martin, Speech enhancement using MMSE short time spectral estimation with Gamma distributed speech priors, [J]. in Proc. IEEE Int. conf. Acoustics , Speech, Signal Processing, vol. 1, pp.253-256, (2002).
DOI: 10.1109/icassp.2002.1005724
Google Scholar
[8]
S. Kamath, P. Loizou, A multi-band Spectral Subtraction Method for Enhancing Speech Corrupted by Colored Noise, [C]. Proceedings of ICASSP[C]. Orlando USA, IV-4164, (2002).
DOI: 10.1109/icassp.2002.5745591
Google Scholar
[9]
J. S. Lim and A. V. Oppenheim. Enhancement and Bandwidth Compression of Noisy Speech, [J]. Proc. of the IEEE, vo1. 67, No. 12, pp.1586-1604, Dec. (1979).
DOI: 10.1109/proc.1979.11540
Google Scholar
[10]
J. D. Gibson, B. Koo, and S. D. Gray, Filtering of Colored Noise for Speech Enhancement and Coding, IEEE Trans. Signal Processing, vol. 39, pp.1732-1742, Aug. (1991).
DOI: 10.1109/78.91144
Google Scholar
[11]
W. R. Wu and P. C. Chen, Subband Kalman Filtering for Speech Enhancement, [J]. IEEE Trans. On Circuits And Systemsli: Analog And Digital Signal Processing, vol. 45, pp.1072-1083, Aug. (1998).
DOI: 10.1109/82.718814
Google Scholar
[12]
S. Gannot, D. Burshtein, E. Weinstein, Iterative and sequential Kalman filter-based speech enhancement algorithms, [J]. IEEE Trans Speech and Audio Process, vol. 6, No. 4, pp.373-385, (1998).
DOI: 10.1109/89.701367
Google Scholar
[13]
Y. Ephraim, H. L. V. Trees, A signal subspace approach for speech enhancement, [J]. IEEE Transactions on Speech and Audio Processing, vol. 3, No. 4, pp.251-266, (1995).
DOI: 10.1109/89.397090
Google Scholar
[14]
U. Mrital, N. Phamdon, Signal/noise KLT based approach for enhancing speech degraded by colored noise, [J].IEEE Trans on Speech and Audio Processing, vol. 8, No. 3, pp.159-167, (2000).
DOI: 10.1109/89.824700
Google Scholar
[15]
A. Rezayee, S. Gazor, An adaptive KLT approach for speech enhancement, [J]. IEEE Tram Speech Audio Processing, vol. 9, No. 2, pp.87-95, (2001).
DOI: 10.1109/89.902276
Google Scholar
[16]
Y. Hu, P. Loizou, A generalized subspace approach for enhancing speech corrupted by colored noise, [J]. IEEE Trans on Speech and Audio Processing, vol. 11, No. 4, pp.334-341, (2004).
DOI: 10.1109/tsa.2003.814458
Google Scholar
[17]
H. Leva, Y. Ephraim, Extension of the signal subspace speech enhancement approach to colored noise, [J]. IEEE Signal Processing, vol. 10, No. 4, pp.104-106, (2003).
DOI: 10.1109/lsp.2003.808544
Google Scholar
[18]
SOON I Y, KOH S N, YEO C K. Noisy speech enhancement using discrete cosine transform[J]. Speech Commun, 1998, 24(3): 249-257.
DOI: 10.1016/s0167-6393(98)00019-3
Google Scholar
[19]
Brady Laska, Miodrag Bolić, Rafik Goubran, Discrete cosine transform particle filter speech enhancement, Speech Communication, Volume 52, Issue 9, September 2010, Pages 762-775.
DOI: 10.1016/j.specom.2010.05.005
Google Scholar
[20]
NOIZEUS: A noisy speech corpus for evaluation of speech enhancement algorithms http: /www. utdallas. edu/~loizou/speech/noizeus/ [EB/OL].
Google Scholar
[21]
Spib Noise data[EB/OL], http: /spib. rice. edu/spib/select_noise. html.
Google Scholar
[22]
Ma, J., Hu, Y. and Loizou, P. Objective measures for predicting speech intelligibility in noisy conditions based on new band-importance functions, Journal of the Acoustical Society of America, 2009,125(5), 3387-3405.
DOI: 10.1121/1.3097493
Google Scholar
[23]
Hu, Y. and Loizou, P. Evaluation of objective quality measures for speech enhancement, IEEE Transactions on Speech and Audio Processing, 2008,16(1), 229-238.
DOI: 10.1109/tasl.2007.911054
Google Scholar
[24]
ITU-T(2000). Perceptual evaluation of speech quality (PESQ): An objective method for end-to-end speech quality assessment of narrowband telephone networks and speech codecs, ITU-T Recommendation P. 862.
DOI: 10.1109/icassp.2001.941023
Google Scholar
[25]
Loizou, P.C.; Gibak Kim; Reasons why Current Speech-Enhancement Algorithms do not Improve Speech Intelligibility and Suggested Solutions; Audio, Speech, and Language Processing, IEEE Transactions on; Issue Date: Jan. 2011; Volume: 19 Issue: 1 ; On page(s): 47 – 56.
DOI: 10.1109/tasl.2010.2045180
Google Scholar