A Nonmonotone Modified BFGS Method for Non-Convex Minimization

Article Preview

Abstract:

In this paper, a modification BFGS method with nonmonotone line-search for solving large-scale unconstrained optimization problems is proposed. A remarkable feature of the proposed method is that it possesses a global convergence property even without convexity assumption on the objective function. Some numerical results are reported which illustrate that the proposed method is efficient

You might also be interested in these eBooks

Info:

Periodical:

Pages:

4023-4026

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Powell, M.J.D. Some global convergence properties of a variable metric algorithm for minimization without exact line searches-nonlinear Programming, Vol. 4, SIAM-AMS Proceedings. SIAM, Philadelpha, PA, (1976).

Google Scholar

[2] Byrd, R.H., Nocedal, J., Yuan, Y. Global convergence of a class of quasi-Newton methods on convex problems. SIAM J. Numer. Anal., 24(4): 1171–1189 (1987).

DOI: 10.1137/0724077

Google Scholar

[3] Byrd, R.H., Nocedal, J. A tool for the analysis of quasi-Newton methods with application to unconstrained minimization. SIAM J. Numer. Anal., 26(3): 727–739 (1989).

DOI: 10.1137/0726042

Google Scholar

[4] Dai, Y.H. Convergence properties of the BFGS algorithm. SIAM J. Optim., 13(2): 693–701 (2002).

DOI: 10.1137/s1052623401383455

Google Scholar

[5] Mascarenhas, W.F. The BFGS method with exact line searchs fails for non-convex objective functions. Math. Program., 99(1): 49–61 (2004).

DOI: 10.1007/s10107-003-0421-7

Google Scholar

[6] Li, D.H., Fukushima, M. On the global convergence of the BFGS methods for nonconvex unconstrained optimization problems. SIAM J. Optim., 11(4): 1054–164 (2001).

DOI: 10.1137/s1052623499354242

Google Scholar

[7] Li, D.H., Fukushima, M. A modified BFGS method and its global convergence in nonconvex minimization.J. Comput. Appl. Math., 129(1): 15–35 (2001).

DOI: 10.1016/s0377-0427(00)00540-9

Google Scholar

[8] Grippo, F. Lampariello, S. Lucidi, A nonmonotone line search technique for Newton's method, SIAM J. Numer. Anal. 23 (1986), pp.707-716.

DOI: 10.1137/0723046

Google Scholar

[9] L. Grippo, F. Lampariello, S. Lucidi, A truncated Newton method with nonmonotone line search for unconstrained optimization, J. Optim. Theory Appl. 60 (1989), pp.401-419.

DOI: 10.1007/bf00940345

Google Scholar

[10] DENG,N.Y., XIAO, Y., and ZHOU,F.J., Nonmonotonic Trust-Region Algorithm, Journal of Optimization Theory and Applications, Vol. 26, (993) pp.259-285.

Google Scholar

[11] BONNANS, J. F., PANIER, E., TITS, A., and ZHOU, J. L., Auoiding the Maratos Effect by Means of a Nonmonotone Line Search, II: InequalityConstrained Problems-Feasible Iterates, SIAM Journal on Numerical Analysis, Vol. 29, (1992) pp.1187-1202.

DOI: 10.1137/0729072

Google Scholar

[12] Conn, A.R., Gould, N.I.M., Toint, Ph.L. CUTE: constrained and unconstrained testing environment. ACM Trans. Math. Softw., 21(1): 123–160 (1995).

DOI: 10.1145/200979.201043

Google Scholar