[1]
Powell, M.J.D. Some global convergence properties of a variable metric algorithm for minimization without exact line searches-nonlinear Programming, Vol. 4, SIAM-AMS Proceedings. SIAM, Philadelpha, PA, (1976).
Google Scholar
[2]
Byrd, R.H., Nocedal, J., Yuan, Y. Global convergence of a class of quasi-Newton methods on convex problems. SIAM J. Numer. Anal., 24(4): 1171–1189 (1987).
DOI: 10.1137/0724077
Google Scholar
[3]
Byrd, R.H., Nocedal, J. A tool for the analysis of quasi-Newton methods with application to unconstrained minimization. SIAM J. Numer. Anal., 26(3): 727–739 (1989).
DOI: 10.1137/0726042
Google Scholar
[4]
Dai, Y.H. Convergence properties of the BFGS algorithm. SIAM J. Optim., 13(2): 693–701 (2002).
DOI: 10.1137/s1052623401383455
Google Scholar
[5]
Mascarenhas, W.F. The BFGS method with exact line searchs fails for non-convex objective functions. Math. Program., 99(1): 49–61 (2004).
DOI: 10.1007/s10107-003-0421-7
Google Scholar
[6]
Li, D.H., Fukushima, M. On the global convergence of the BFGS methods for nonconvex unconstrained optimization problems. SIAM J. Optim., 11(4): 1054–164 (2001).
DOI: 10.1137/s1052623499354242
Google Scholar
[7]
Li, D.H., Fukushima, M. A modified BFGS method and its global convergence in nonconvex minimization.J. Comput. Appl. Math., 129(1): 15–35 (2001).
DOI: 10.1016/s0377-0427(00)00540-9
Google Scholar
[8]
Grippo, F. Lampariello, S. Lucidi, A nonmonotone line search technique for Newton's method, SIAM J. Numer. Anal. 23 (1986), pp.707-716.
DOI: 10.1137/0723046
Google Scholar
[9]
L. Grippo, F. Lampariello, S. Lucidi, A truncated Newton method with nonmonotone line search for unconstrained optimization, J. Optim. Theory Appl. 60 (1989), pp.401-419.
DOI: 10.1007/bf00940345
Google Scholar
[10]
DENG,N.Y., XIAO, Y., and ZHOU,F.J., Nonmonotonic Trust-Region Algorithm, Journal of Optimization Theory and Applications, Vol. 26, (993) pp.259-285.
Google Scholar
[11]
BONNANS, J. F., PANIER, E., TITS, A., and ZHOU, J. L., Auoiding the Maratos Effect by Means of a Nonmonotone Line Search, II: InequalityConstrained Problems-Feasible Iterates, SIAM Journal on Numerical Analysis, Vol. 29, (1992) pp.1187-1202.
DOI: 10.1137/0729072
Google Scholar
[12]
Conn, A.R., Gould, N.I.M., Toint, Ph.L. CUTE: constrained and unconstrained testing environment. ACM Trans. Math. Softw., 21(1): 123–160 (1995).
DOI: 10.1145/200979.201043
Google Scholar