Image Segmentation by Pre-Labeling Based on Part-Based Model

Article Preview

Abstract:

Interactive segmentation with graph cuts has become very popular and many priors have been introduced into graph cuts to improve the results. This paper proposed a method which uses the deformable part-based model to pre-label the seeds. First the deformable part-based model finds out the bounding box, then we can pre-label the seed point based on the assumption of compact shape. Our results show that our method can get more accurate result especially the appearance of the object and background are similar and the shape is compact.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

4206-4210

Citation:

Online since:

May 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Boykov, M. -P. Jolly: Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images, in: ICCV, 2001, p.105–112.

DOI: 10.1109/iccv.2001.937505

Google Scholar

[2] C. Rother, V. Kolmogorov, A. Blake: grabcut,: interactive foreground extraction using iterated graph cuts, ACM Trans. Graph. 23 (3) (2004) 309–314.

DOI: 10.1145/1015706.1015720

Google Scholar

[3] O. Veksler: Star shape prior for graph-cut image segmentation, in: ECCV (3), 2008, p.454–467.

DOI: 10.1007/978-3-540-88690-7_34

Google Scholar

[4] G. G. Slabaugh, G. B. Unal: Graph cuts segmentation using an elliptical shape prior, in: ICIP (2), 2005, p.1222–1225.

DOI: 10.1109/icip.2005.1530282

Google Scholar

[5] V. S. Lempitsky, P. Kohli, C. Rother, T. Sharp: Image segmentation with a bounding box prior, in: ICCV, 2009, p.277–284.

DOI: 10.1109/iccv.2009.5459262

Google Scholar

[6] M. E. Leventon, W. E. L. Grimson, O. D. Faugeras: Statistical shape influence in geodesic active contours, in: CVPR, 2000, p.1316–1323.

DOI: 10.1109/cvpr.2000.855835

Google Scholar

[7] A. Tsai, A. J. Yezzi, W. M. W. III, C. M. Tempany, D. Tucker, A. C. Fan,W. E. L. Grimson, A. S. Willsky: Model-based curve evolution technique for image segmentation, in: CVPR (1), 2001, p.463–468.

DOI: 10.1109/cvpr.2001.990511

Google Scholar

[8] M. Rousson, N. Paragios: Shape priors for level set representations, in: ECCV (2), 2002, p.78–92.

DOI: 10.1007/3-540-47967-8_6

Google Scholar

[9] V. S. Lempitsky, A. Blake, C. Rother: Image segmentation by branch-and-mincut, in: ECCV (4), 2008, p.15–29.

DOI: 10.1007/978-3-540-88693-8_2

Google Scholar

[10] D. Cremers, F. R. Schmidt, F. Barthel: Shape priors in variational image segmentation: Convexity, lipschitz continuity and globally optimal solutions, in: CVPR, (2008).

DOI: 10.1109/cvpr.2008.4587446

Google Scholar

[11] P. F. Felzenszwalb, D. P. Huttenlocher: Pictorial structures for object recognition, International Journal of Computer Vision 61 (1) (2005) 55–79.

DOI: 10.1023/b:visi.0000042934.15159.49

Google Scholar

[12] B. Yangel, D. Vetrov: Image segmentation with a shape prior based on simplified skeleton, in: EMMCVPR, 2011, p.247–260.

Google Scholar

[13] P. F. Felzenszwalb, R. B. Girshick, D. A. McAllester, D. Ramanan: Object detection with discriminatively trained part-based models, IEEE Trans. Pattern Anal. Mach. Intell. 32 (9) (2010) 1627–1645.

DOI: 10.1109/tpami.2009.167

Google Scholar

[14] V. Kolmogorov, R. Zabih: What energy functions can be minimized via graph cuts?, IEEE Trans. Pattern Anal. Mach. Intell. 26 (2) (2004) 147–159.

DOI: 10.1109/tpami.2004.1262177

Google Scholar

[15] O. Veksler: Stereo correspondence with compact windows via minimum ratio cycle, IEEE Trans. Pattern Anal. Mach. Intell. 24 (12) (2002) 1654–1660.

DOI: 10.1109/tpami.2002.1114859

Google Scholar

[16] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, A. Zisserman, The PASCAL Visual Object Classes Challenge 2009 (VOC2009) Results, http: /www. pascal-network. org.

DOI: 10.1007/s11263-009-0275-4

Google Scholar

[17] N. Dalal, B. Triggs: Histograms of oriented gradients for human detection, in: CVPR (1), 2005, p.886–893.

Google Scholar