[1]
Kudo M and Jack S, Comparison of algorithms that select features for pattern classifiers, , Pattern Recoginiton, 2000, 33, pp.25-41.
DOI: 10.1016/s0031-3203(99)00041-2
Google Scholar
[2]
Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces versus fisherfaces; Recogintion using class specific linear projection, IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(5), pp.711-720.
DOI: 10.1109/34.598228
Google Scholar
[3]
T. Cox and M. Cox, Multidimensional Scaling, , London: Chapman & Hall, (1994).
Google Scholar
[4]
I.T. Jolliffe, Principle Component Analysis, , Springer, (1986).
Google Scholar
[5]
S. Roweis and L. Saul, Nonlinear Dimensionality Reduction by locally linear embedding, Science, 2000, vol. 290.
DOI: 10.1126/science.290.5500.2323
Google Scholar
[6]
Olga Kouropteva, Classification of handwritten digits using supervised locally linear embedding algorithm and support vector machine, , Proc. of the 11th European Symposium on Artificial Neural Networks, April 23-25, Bruges, Belgium, pp.229-234.
Google Scholar
[7]
Joshua B. Tenenbaum, Vin de Silva, and John C. Langford, A Global Geometric Framework for Nonlinear Dimensionality Reduction, , Science, 2000, vol. 290, pp.2319-2323.
DOI: 10.1126/science.290.5500.2319
Google Scholar
[8]
Rui Xiao, Qijun Zhao, David Zhang and Pengfei Shi, Facial expression recognition on multiple manifolds, Pattern Recognition 2011, 44 (1), pp.107-116.
DOI: 10.1016/j.patcog.2010.07.017
Google Scholar
[9]
Jian Yang and David Zhang, Globally Maximizing, Locally Minimizing: Unsupervised Discriminant projection with Applications to Face and Palm Biometrics, IEEE Trans. Pattern Analysis and Machine Intelligence, 2007, vol 29, No 4, pp.650-664.
DOI: 10.1109/tpami.2007.1008
Google Scholar
[10]
D. F. Specht, A general regression neural network, , IEEE Trans. Neural Networks, vol. 2, no. 6, pp.568-576, November. (1991).
DOI: 10.1109/72.97934
Google Scholar
[11]
http: /vision. ucmerced. edu/datasets/landuse. html.
Google Scholar
[12]
X. Chen, T. Fang, H. Huo and D. R. Li, Graph-based feature selection for object-oriented classification in VHR airborne imagery, , IEEE Trans. GeoScience and Remote Sensing, vol. 49, no. 1, pp.353-365, January, (2011).
DOI: 10.1109/tgrs.2010.2054832
Google Scholar