The Simulation of the Psychological Impact of Computer Vision De-Noising Technology

Article Preview

Abstract:

The paper mainly discusses the analysis method for the psychological impact of computer vision noising technology. Actually, people's psychological acceptance and corresponding memory capacity of computer vision images with lots of noise are relatively poor. The de-noising process to computer vision images can improve the clarity, thus generating passive psychological impact. Therefore, the paper proposes a spatial domain filtering algorithm-based de-noising method for computer vision. It establishes wavelet packet decomposition tree for computer vision images and de-noises accordance with the decomposing results. The experiment results show that the proposed de-noising method has passive psychological influence and improves the memory capacity of computer vision images.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

5013-5016

Citation:

Online since:

May 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Bertone P, Stolc V, Royce TE, et al. G lobal identification of human transcribed sequences with genom e tiling arrays [J]. Science, 2004, 306(24): 2242.

DOI: 10.1126/science.1103388

Google Scholar

[2] Selesnick, I.W., A new complex-directional wavelet transform and its application to image denoising[J].  IEEE CNF, Image Processing. 2002. Proceedings. , 2002, 3 : 573 – 576.

DOI: 10.1109/icip.2002.1039035

Google Scholar

[3] K. Hirakawa, T.W. Parks, Image Denoising for Signal-Dependent Noise[J]. IEEE ICASSP, 2005, 2: 29-32.

Google Scholar

[4] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity[J]. IEEE Trans. Image Process., 2004(4), 13(4): 600–612.

DOI: 10.1109/tip.2003.819861

Google Scholar

[5] H. Tian, B. Fowler, A. E. Gamal, Analysis of Temporal Noise in CMOS Photodiode Active Pixel Sensor[J]. IEEE Jnl. Solid-State Circuits, 2001, 36(1): 92 - 101.

DOI: 10.1109/4.896233

Google Scholar

[6] Chen S H, Wang J F. Speech enhancement using perceptual wavelet packet decomposition and teager energy operator[J]. J of VLSI Signal Processing, 2004, 36(2/3): 125-139.

DOI: 10.1023/b:vlsi.0000015092.19005.62

Google Scholar

[7] Samuel H. Chang, Leiguang Gong,Maoqing Li.Small Retinal Vessel Extraction Using Modified Canny Edge Detection [J],ICALIP2008, 1255-1259.

DOI: 10.1109/icalip.2008.4590140

Google Scholar

[8] D. Hu, X. Tian. A Multi-Directions Algorithm for Edge Detection Based on Fuzzy Mathematical Morphology[C]. Proceeding of the 16th International conference on Aritificial Reality and Telexistence-Workshops(ICAT06), IEEE, 2006, 11 : 361-364.

DOI: 10.1109/icat.2006.15

Google Scholar

[9] Timothy S. Newman, Hong Yi. A survey of the marching cubes algorithm [J]. Computers & Graphics, 2006, 30(5): 854-879.

DOI: 10.1016/j.cag.2006.07.021

Google Scholar