Design and Analysis InGaAs Near-IR Nanowire Photodetector for High Speed Satellite Laser Communication Application

Article Preview

Abstract:

InGaAs is direct and narrow bandgap material with ultrahigh electron mobility, and is a promising candidate for optoelectronic device in the near-infrared region. The main objective of this manuscript is to design an InGaAs semiconductor-based photodetectors nanowire infrared photodetector, which would be manipulated in optical response wavelength range at room temperature with high-detective and fast-responsive performances. Considering into account mature technology in laser device and for maximizing 1.55 um optical communication performance, the design of achieved bandwidth is >1 Gbps. According to the theoretical calculations, the fundamental parameters of the InGaAs core-shell nanowire APD photodetector device are obtained, with certain values of single nanowire diameter, lateral size and applied voltage, r=100 nm, l=1 μm, Vbias=10 V. Meanwhile, we deal with the electrons mobility of the internal nanowire based on three factors, size effect, temperature and electric field effect. The results demonstrate that the InGaAs nanowire APD is potential candidatefor high rate in satellite laser communication field.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

5163-5167

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Biswajit DAS, PavanSINGARAJU. Novel Quantum Wire Infrared Photodetectors[J]. Infrared Physics & Technology, 2005, 46(3): 209-218.

DOI: 10.1016/j.infrared.2004.02.001

Google Scholar

[2] Chiun-Lung TSAI, Chaofeng XU, KC HSIEH, et al. Growth Optimization of InGaAs Quantum Wires for Infrared Photodetector Applications[J]. Journal of Vacuum Science & Technology B, 2006, 24(3): 1527-1531.

DOI: 10.1116/1.2190665

Google Scholar

[3] S CHAKRABARTI, AD STIFF-ROBERTS, XH SU, et al. High-performance Mid-infrared Quantum Dot Infrared Photodetectors[J]. Journal of Physics D: Applied Physics, 2005, 38(13): 2135.

DOI: 10.1088/0022-3727/38/13/009

Google Scholar

[4] Cesare SOCI, Arthur ZHANG, Xin-Yu BAO, et al. Nanowire Photodetectors[J]. Journal of Nanoscience and Nanotechnology, 2010, 10(3): 1430-1449.

Google Scholar

[5] Gilgueng HWANG, Cedric DOCKENDORF, Dominik BELL, etal. 3-DInGaAs/GaAs Helical Nanobelts for Optoelectronic Devices[J]. International Journal of Optomechatronics, 2008, 2(2): 88-103.

DOI: 10.1080/15599610802081795

Google Scholar

[6] Alexandra C FORD, Johnny C HO, Yu-Lun CHUEH, et al. Diameter-dependent Electron Mobility of Inas Nanowires[J]. Nano Letters, 2008, 9(1): 360-365.

DOI: 10.1021/nl803154m

Google Scholar

[7] Katsuhiro TOMIOKA, Masatoshi YOSHIMURA, Takashi FUKUI. A III-V Nanowire Channel on Silicon for High-performance Vertical Transistors[J]. Nature, 2012, 488(7410): 189-192.

DOI: 10.1038/nature11293

Google Scholar

[8] Jared J HOU, Fengyun WANG, Ning HAN, et al. Diameter Dependence of Electron Mobility in InGaAs Nanowires[J]. Applied Physics Letters, 2013, 102(9): 93112.

Google Scholar

[9] DA CARDIMONA, DH HUANG, DT LE, et al. New Optical Detector Concepts for Space Applications[Z]. 2005: 58970-58970.

Google Scholar

[10] Pradeep SENANAYAKE, Chung-Hong HUNG, Alan FARRELL, et al. Thin 3d Multiplication Regions in Plasmonically Enhanced Nanopillar Avalanche Detectors[J]. Nano Letters, 2012, 12(12): 6448-6452.

DOI: 10.1021/nl303837y

Google Scholar

[11] Jinna HE, Chunzhen FAN, Junqiao WANG, et al. Plasmonic Nanostructure for Enhanced Light Absorption in Ultrathin Silicon Solar Cells[J]. Advances in Optoelectronics, 2012, 2012(2012): 1-8.

DOI: 10.1155/2012/592754

Google Scholar

[12] Gokalp KAHRAMAN, Bahaa EA SALEH, Winslow L SARGEANT, et al. Time and Frequency Response of Avalanche Photodiodes with Arbitrary Structure[J]. Electron Devices, IEEE Transactions on, 1992, 39(3): 553-560.

DOI: 10.1109/16.123477

Google Scholar

[13] GJ REES, JPRDAVID. Nonlocal Impact Ionization and Avalanche Multiplication[J]. Journal of Physics D: Applied Physics, 2010, 43(24): 243001.

DOI: 10.1088/0022-3727/43/24/243001

Google Scholar

[14] Damodar M PAI. Transient Photoconductivity in Poly (n-vinylcarbazole)[J]. The Journal of Chemical Physics, 2003, 52(5): 2285-2291.

Google Scholar

[15] Xiaocheng JIANG, Qihua XIONG, Sungwoo NAM, et al. InAs/InP Radial Nanowire Heterostructures as High Electron Mobility Devices[J]. Nano Letters, 2007, 7(10): 3214-3218.

DOI: 10.1021/nl072024a

Google Scholar

[16] Mool C GUPTA, John BALLATO. The Handbook of Photonics[M]. [S. l. ]: Crc Press, (2012).

Google Scholar