[1]
Biswajit DAS, PavanSINGARAJU. Novel Quantum Wire Infrared Photodetectors[J]. Infrared Physics & Technology, 2005, 46(3): 209-218.
DOI: 10.1016/j.infrared.2004.02.001
Google Scholar
[2]
Chiun-Lung TSAI, Chaofeng XU, KC HSIEH, et al. Growth Optimization of InGaAs Quantum Wires for Infrared Photodetector Applications[J]. Journal of Vacuum Science & Technology B, 2006, 24(3): 1527-1531.
DOI: 10.1116/1.2190665
Google Scholar
[3]
S CHAKRABARTI, AD STIFF-ROBERTS, XH SU, et al. High-performance Mid-infrared Quantum Dot Infrared Photodetectors[J]. Journal of Physics D: Applied Physics, 2005, 38(13): 2135.
DOI: 10.1088/0022-3727/38/13/009
Google Scholar
[4]
Cesare SOCI, Arthur ZHANG, Xin-Yu BAO, et al. Nanowire Photodetectors[J]. Journal of Nanoscience and Nanotechnology, 2010, 10(3): 1430-1449.
Google Scholar
[5]
Gilgueng HWANG, Cedric DOCKENDORF, Dominik BELL, etal. 3-DInGaAs/GaAs Helical Nanobelts for Optoelectronic Devices[J]. International Journal of Optomechatronics, 2008, 2(2): 88-103.
DOI: 10.1080/15599610802081795
Google Scholar
[6]
Alexandra C FORD, Johnny C HO, Yu-Lun CHUEH, et al. Diameter-dependent Electron Mobility of Inas Nanowires[J]. Nano Letters, 2008, 9(1): 360-365.
DOI: 10.1021/nl803154m
Google Scholar
[7]
Katsuhiro TOMIOKA, Masatoshi YOSHIMURA, Takashi FUKUI. A III-V Nanowire Channel on Silicon for High-performance Vertical Transistors[J]. Nature, 2012, 488(7410): 189-192.
DOI: 10.1038/nature11293
Google Scholar
[8]
Jared J HOU, Fengyun WANG, Ning HAN, et al. Diameter Dependence of Electron Mobility in InGaAs Nanowires[J]. Applied Physics Letters, 2013, 102(9): 93112.
Google Scholar
[9]
DA CARDIMONA, DH HUANG, DT LE, et al. New Optical Detector Concepts for Space Applications[Z]. 2005: 58970-58970.
Google Scholar
[10]
Pradeep SENANAYAKE, Chung-Hong HUNG, Alan FARRELL, et al. Thin 3d Multiplication Regions in Plasmonically Enhanced Nanopillar Avalanche Detectors[J]. Nano Letters, 2012, 12(12): 6448-6452.
DOI: 10.1021/nl303837y
Google Scholar
[11]
Jinna HE, Chunzhen FAN, Junqiao WANG, et al. Plasmonic Nanostructure for Enhanced Light Absorption in Ultrathin Silicon Solar Cells[J]. Advances in Optoelectronics, 2012, 2012(2012): 1-8.
DOI: 10.1155/2012/592754
Google Scholar
[12]
Gokalp KAHRAMAN, Bahaa EA SALEH, Winslow L SARGEANT, et al. Time and Frequency Response of Avalanche Photodiodes with Arbitrary Structure[J]. Electron Devices, IEEE Transactions on, 1992, 39(3): 553-560.
DOI: 10.1109/16.123477
Google Scholar
[13]
GJ REES, JPRDAVID. Nonlocal Impact Ionization and Avalanche Multiplication[J]. Journal of Physics D: Applied Physics, 2010, 43(24): 243001.
DOI: 10.1088/0022-3727/43/24/243001
Google Scholar
[14]
Damodar M PAI. Transient Photoconductivity in Poly (n-vinylcarbazole)[J]. The Journal of Chemical Physics, 2003, 52(5): 2285-2291.
Google Scholar
[15]
Xiaocheng JIANG, Qihua XIONG, Sungwoo NAM, et al. InAs/InP Radial Nanowire Heterostructures as High Electron Mobility Devices[J]. Nano Letters, 2007, 7(10): 3214-3218.
DOI: 10.1021/nl072024a
Google Scholar
[16]
Mool C GUPTA, John BALLATO. The Handbook of Photonics[M]. [S. l. ]: Crc Press, (2012).
Google Scholar