Dynamic Deformation Behavior of ECAPed AZ31 Magnesium Alloy

Article Preview

Abstract:

Equal channel angular pressing (ECAP) has been widely used for grain refinement in many alloys. In this article, the major emphasis was on the effect of grain size, temperature and strain rate on dynamic behavior of ECAPed AZ31. The dynamic mechanical properties of 6 pass and 8 pass ECAPed AZ31 were tested by split hopkinson pressing bar (SHPB) at wide temperatures range. At dynamic loading conditions, the ECAPed AZ31 shows strong strain hardening properties. The strain hardening rates decrease due to more slip systems’ opening with the increase of temperature. With the grain refinement, the fine-grain size and temperature show strong effect on the strain rate sensitivity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

104-109

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Koike, R. Ohyama: Acta materialia, Vol. 53 (2005), p.1963-(1972).

Google Scholar

[2] Y. Chino, M. Kado and M. Mabuchi: Acta materialia, Vol. 56 (2008), pp.387-394.

Google Scholar

[3] K. Kubota, M. Mabuchi and K. Higashi: Journal of Materials Science, Vol. 34 (1999), pp.2255-2262.

Google Scholar

[4] A. Luo: International Materials Reviews, Vol. 49 (2004), pp.13-30.

Google Scholar

[5] S. Park, G. Bae, D. Kang, B. You and N. J. Kim: Scripta Materialia, Vol. 61 (2009), pp.223-226.

Google Scholar

[6] H. Watanabe, K. Ishikawa: Materials Science and Engineering: A, Vol. 523 (2009), pp.304-311.

Google Scholar

[7] W.Q. Song, P. Beggs and M. Easton: Materials & Design, Vol. 30 (2009), pp.642-648.

Google Scholar

[8] G. Wan, B. Wu, Y. Zhang, G. Sha and C. Esling: Materials Science and Engineering: A, Vol. 527 (2010), pp.2915-2924.

Google Scholar

[9] B. Li, S. Joshi, K. Azevedo, E, Ma, K.T. Ramesh, R.B. Figueiredo and T.G. Langdon: Materials Science and Engineering: A, Vol. 517 (2009), pp.24-29.

Google Scholar

[10] M.T. Tucker, M.F. Horstemeyer, P.M. Gullett, H.E. Kadiri and W.R. Whittington: Scripta Materialia, Vol. 60 (2009), pp.182-185.

DOI: 10.1016/j.scriptamat.2008.10.011

Google Scholar

[11] K. Ishikawa, H. Watanabe and T. Mukai: Materials Letters, Vol. 59 (2005), pp.1511-1515.

Google Scholar

[12] H. Watanabe, K. Ishikawa and T. Mukai: Key Engineering Materials, Vol. 340 (2007), pp.107-112.

Google Scholar

[13] T. Mukai, M. Yamanoi, H. Watanabe, K. Ishikawa and K. Higashi: Materials transactions-JIM, Vol. 42 (2001), pp.1177-1181.

Google Scholar

[14] Q. Wei: Journal of Materials Science, Vol. 42 (2007), pp.1709-1727.

Google Scholar

[15] R. Korla and A. H. Chokshi: Scripta Materialia, Vol. 63 (2010), pp.913-916.

Google Scholar

[16] M. Panicker and A. Chokshi: Materials Science and Engineering: A, Vol. 528 (2011), pp.3031-3036.

Google Scholar

[17] M.Y. Zheng, S.W. Xu, X.G. Qiao, K. Wu, S, Kamado and Y, Kojima: Materials Science and Engineering: A, Vol. 483 (2008), pp.564-567.

Google Scholar