[1]
Sumer, B.M., R.J. Whitehouse, and A. Tørum, Scour around coastal structures: a summary of recent research. Coastal Engineering, 2001. 44(2): pp.153-190.
DOI: 10.1016/s0378-3839(01)00024-2
Google Scholar
[2]
Gao, F., X. Gu, D.S. Jeng, and H. Teo, An experimental study for wave-induced instability of pipelines: the breakout of pipelines. Applied ocean research, 2002. 24(2): pp.83-90.
DOI: 10.1016/s0141-1187(02)00012-3
Google Scholar
[3]
Yang, B., F. -P. Gao, D. -S. Jeng, and Y. -X. Wu, Experimental study of vortex-induced vibrations of a pipeline near an erodible sandy seabed. Ocean engineering, 2008. 35(3): pp.301-309.
DOI: 10.1016/j.oceaneng.2007.11.001
Google Scholar
[4]
Khalak, A. and C. Williamson, Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping. Journal of Fluids and Structures, 1999. 13(7): pp.813-851.
DOI: 10.1006/jfls.1999.0236
Google Scholar
[5]
Gao, F. -P., B. Yang, Y. -X. Wu, and S. -M. Yan, Steady current induced seabed scour around a vibrating pipeline. Applied Ocean Research, 2006. 28(5): pp.291-298.
DOI: 10.1016/j.apor.2007.01.004
Google Scholar
[6]
Oner, A.A., M. Salih Kirkgoz, and M. Sami Akoz, Interaction of a current with a circular cylinder near a rigid bed. Ocean Engineering, 2008. 35(14): pp.1492-1504.
DOI: 10.1016/j.oceaneng.2008.06.005
Google Scholar
[7]
Koushan, K., Vortex induced vibrations of free span pipelines, in Ph.D. thesis in Norwegian University of Science and Technology. 2009, Linköping.
Google Scholar
[8]
Gabbai, R. and H. Benaroya, An overview of modeling and experiments of vortex-induced vibration of circular cylinders. Journal of Sound and Vibration, 2005. 282(3): pp.575-616.
DOI: 10.1016/j.jsv.2004.04.017
Google Scholar
[9]
Sumer, B. and J.F.M. FREDSØE, A review on vibrations of marine pipelines. International Journal of Offshore and Polar Engineering, 1995. 5(2).
Google Scholar
[10]
Yang, B., et al, Experimental study on vortex-induced vibrations of submarine pipeline near seabed boundary in ocean currents. (2006).
Google Scholar
[11]
Li, F. and L. Cheng, Prediction of lee-wake scouring of pipelines in currents. Journal of waterway, port, coastal, and ocean engineering, 2001. 127(2): pp.106-112.
DOI: 10.1061/(asce)0733-950x(2001)127:2(106)
Google Scholar
[12]
Liang, D. and L. Cheng, Numerical modeling of flow and scour below a pipeline in currents: Part I. Flow simulation. Coastal Engineering, 2005. 52(1): pp.25-42.
DOI: 10.1016/j.coastaleng.2004.09.002
Google Scholar
[13]
Liang, D., L. Cheng, and F. Li, Numerical modeling of flow and scour below a pipeline in currents: Part II. Scour simulation. Coastal engineering, 2005. 52(1): pp.43-62.
DOI: 10.1016/j.coastaleng.2004.09.001
Google Scholar
[14]
Smith, H.D. and D.L. Foster, Modeling of flow around a cylinder over a scoured bed. Journal of waterway, port, coastal, and ocean engineering, 2005. 131(1): pp.14-24.
DOI: 10.1061/(asce)0733-950x(2005)131:1(14)
Google Scholar
[15]
Zhao, M. and L. Cheng, Numerical investigation of local scour below a vibrating pipeline under steady currents. Coastal Engineering, 2010. 57(4): pp.397-406.
DOI: 10.1016/j.coastaleng.2009.11.008
Google Scholar
[16]
Kazeminezhad, M., A. Yeganeh-Bakhtiary, and A. Etemad-Shahidi, Numerical investigation of boundary layer effects on vortex shedding frequency and forces acting upon marine pipeline. Applied Ocean Research, 2010. 32(4): pp.460-470.
DOI: 10.1016/j.apor.2010.10.002
Google Scholar
[17]
Yeganeh-Bakhtiary, A., M. Zanganeh, E. Kazemi, L. Cheng, and A.A. Wahab, Euler–Lagrange Two-Phase Model for Simulating Live-Bed Scour Beneath Marine Pipelines. Journal of Offshore Mechanics and Arctic Engineering, 2013. 135: pp.031705-1.
DOI: 10.1115/1.4023200
Google Scholar
[18]
Sabbagh-Yazd, R., N. Mastorakis, F. Meysami, and F. Namazi-Saleh, 2D Galerkin Finite Volume Solution of Steady Inviscid/Viscous/Turbulent Artificial Compressible Flow on Triangular Meshes. International Journal of Computers, 2008. 2(1): pp.39-46.
Google Scholar