[1]
J.H. Bruus, P.H. Nielsen and K. Keiding, On the stability of activated sludge flocs with implications to dewatering, Wat. Res., 26, pp.1597-1604, (1992).
DOI: 10.1016/0043-1354(92)90159-2
Google Scholar
[2]
D.C. Sobeck and M.J. Higgins, Examination of three theories for mechanisms of cation induced bioflocculation, Wat. Res., 36, pp.527-538, (2002).
DOI: 10.1016/s0043-1354(01)00254-8
Google Scholar
[3]
B. Jin, B.M. Wilen and P. Lant, Impacts of morphological, physical and chemical properties of sludge flocs on dewaterability of activated sludge, Chem. Eng., 98, pp.115-126, (2004).
DOI: 10.1016/j.cej.2003.05.002
Google Scholar
[4]
P.R. Karr and T.M. Keinath, Influence of particle size on sludge dewatering, J. Wat. Pollut. Control Federation, 50, pp.1911-1930, (1978).
Google Scholar
[5]
G. Surucu and F. D Cetin, Effect of temperature, pH and DO concentration on filterability and compressibility of activated sludge, Wat. Res., 23, pp.1389-1395, (1989).
DOI: 10.1016/0043-1354(89)90078-x
Google Scholar
[6]
B.Q. Liao, D.G. Allen, G.G. Leppard, I.G. Droppo and S.N. Liss, Interparticle interactions affecting the stability of sludge flocs, J. Colloid and Interface Sci., 249, pp.372-380, (2002).
DOI: 10.1006/jcis.2002.8305
Google Scholar
[7]
Y. Chen, H. Yang and G. Gu, Effect of acid surfactant treatment on activated sludge dewatering and settling, Wat. Res., 35, 2615-2620, (2001).
DOI: 10.1016/s0043-1354(00)00565-0
Google Scholar
[8]
O.G. Apul, I. Atalar, G.T. Zorba and F.D. Sanin, The dewaterability of disintegrated sludge samples before and after anaerobic digestion, Drying Technol., 28, pp.901-909, (2010).
DOI: 10.1080/07373937.2010.490764
Google Scholar
[9]
J. Pere, R. Alen, L. Viikari and L. Eriksson, Characterisation and dewatering of activated sludge from pulp and paper industry, Wat. Sci. Technol., 28, pp.193-201, (1993).
DOI: 10.2166/wst.1993.0046
Google Scholar
[10]
J.H. Kwon, S.H. Ryu, K.Y. Park, I.T. Yeom and K.H. Ahn, Enhancement of sludge dewaterability by ozone treatment, J. Chin. Ins. Chem. Eng., 32, pp.555-558, (2001).
Google Scholar
[11]
E. Neyens, J. Baeyens, R. Dewil and B. De heyder, Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering, J. Hazard. Mat. 106B, p.83–92, (2004).
DOI: 10.1016/j.jhazmat.2003.11.014
Google Scholar
[12]
E. Neyens and J. Bayeyens, A review of thermal sludge pretreatment processes to improve dewaterability, J. Hazard. Mat., 98, pp.51-67, (2003).
Google Scholar
[13]
H. Yuan, N. Zhu and F. Song, Dewaterability characteristics of sludge conditioned with surfactants pretreatment by electrolysis, Bioresource Technol., 102, pp.2308-2315, (2011).
DOI: 10.1016/j.biortech.2010.10.065
Google Scholar
[14]
A.R. Andrade, P.D.P. Alves, C.H.V. Fidellis, P.M. Donate and J.F.C. Boodts, Ethanol electrooxidation in ruthenium-oxide-coated titanium electrodes, J. Electrochem. Society, 145, pp.3839-3843, (1998).
DOI: 10.1149/1.1838882
Google Scholar
[15]
G. Chen, X. Chen and P.L. Yue, Electrochemical behavior of novel Ti/IrOx-Sb2O5-SnO2 anodes, J. Phys. Chem. B., 106, pp.4364-4369, (2002).
Google Scholar
[16]
H. Li, Y. Chen, Y. Zhang, W. Han, X. Sun, J. Li and L. Wang, Preparation of Ti/PbO2–Sn anodes for electrochemical degradation of phenol, J. Electroanalytical Chem., 689, pp.193-200, (2013).
DOI: 10.1016/j.jelechem.2012.11.035
Google Scholar
[17]
H. Ding, Y. Feng and J. Liu, Preparation and properties of Ti/SnO2-Sb2O5 electrodes by electrodeposition, Mat. Letters, 61, pp.4920-4923, (2007).
DOI: 10.1016/j.matlet.2007.03.073
Google Scholar
[18]
L.J. Song, N.W. Zhu, H.P. Yuan, Y. Hong, J. Ding, Enhancement of waste activated sludge aerobic digestion by electrochemical pre-treatment, Water Res. 44 (2010) 4371–4378.
DOI: 10.1016/j.watres.2010.05.052
Google Scholar
[19]
C. Comninellis and G.P. Vercesi Characterization of DSA®-type oxygen evolving electrodes: choice of a coating, J. Appl. Electrochem., 21, pp.335-345, (1991).
DOI: 10.1007/bf01020219
Google Scholar
[20]
C.R. Costa, C.M.R. Botta, E.L.G. Espindola and P. Olivi, Eletrochemical treatment of tannery wastewater using DSA® electrodes, J. Hazard. Mat., 153, pp.616-624, (2008).
DOI: 10.1016/j.jhazmat.2007.09.005
Google Scholar
[21]
R.D. Coteiro and A.R. De Andrade, Electrochemical oxidation of 4-chlorophenol and its by-products using Ti/Ru0. 3M0. 7O2 (M = Ti or Sn) anodes: preparation route versus degradation efficiency, J. Appl. Electrochem., 37, pp.691-698, (2007).
DOI: 10.1007/s10800-007-9301-9
Google Scholar
[22]
Y.J. Feng, Y. Cui, B. Logan and Z. Liu, Perfomance of Gd-doped Ti-based Sb-SnO2 anodes for electrochemical destruction of phenol, Chemosphere, 70, pp.1629-1639, (2008).
DOI: 10.1016/j.chemosphere.2007.07.083
Google Scholar
[23]
Y. Feng and X. Li, Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution, Wat. Res., 37, pp.2399-2407, (2003).
DOI: 10.1016/s0043-1354(03)00026-5
Google Scholar
[24]
M. Ferreira, H. Varela, R.M. Torresi and G. Tremiliosi-Filho, Electrodes passivation caused by polymerization of different phenolic compounds, Electrochimica A-cta, 52, pp.434-442, (2006).
DOI: 10.1016/j.electacta.2006.05.025
Google Scholar
[25]
J.C. Forti, P. Olivi and A.R. De Andrade, Characterization of DSA®-type coatings with nominal composition Ti/Ru0. 3Ti(0. 7-x)SnxO2 prepared via a polymeric precursor, Electrochimica Acta., 47, pp.913-920, (2001).
DOI: 10.1016/s0013-4686(01)00791-5
Google Scholar
[26]
R.G. Freitas, R.T.S. Oliveira, M.C. Santos, L.O.S. Bulhões and E.C. Pereira, Preparation of Pt thin film electrodes using the Pechini method, Mat. Letters, 60, pp.1906-1910, (2006).
DOI: 10.1016/j.matlet.2005.12.050
Google Scholar
[27]
E.C.P.E. Rodrigues and P. Olivi, Preparation and characterization of Sb-doped SnO2 films with controlled stoichiometry from polymeric precursors, J. Phys. and Chem. of solids, 64, pp.1105-1112, (2003).
DOI: 10.1016/s0022-3697(03)00003-9
Google Scholar
[28]
R.A. Torresa, V. Sarria, W. Torres, P. Peringera and C. Pulgarina, Electrochemical treatment of industrial wastewater containing 5-amino-6-methyl-2-benzimidazolone: toward an electrochemical-biological coupling, Wat. Res., 37, pp.3118-3124, (2003).
DOI: 10.1016/s0043-1354(03)00179-9
Google Scholar
[29]
APHA . 2005. Standard Methods for the Examination of Water and Wastewater. 21st ed. American Public Health Association, Washington D. C., USA.
Google Scholar
[30]
Hach. 2003. Water Analysis Handbook. 4th ed. Loveland, CO, USA: Hach Company.
Google Scholar
[31]
E. Neyens, J. Baeyens, R. Dewil, B. De heyder, Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering, J. Hazard. Mat., 106B, p.83–92, (2004).
DOI: 10.1016/j.jhazmat.2003.11.014
Google Scholar