Electrochemical Disintegration of Activated Sludge Using Ti/RuO2 Anode

Article Preview

Abstract:

Electrochemical process is one of the most effective methods to enhance sludge disintegration. In this study, Ti/RuO2 anodes were prepared by Pechini’s method and the electrode surface morphology was characterized by FESEM and EDAX. The effects of various operating conditions were investigated including initial pH value of sludge, sludge concentration, electrolysis time and current density. The study showed that the removal efficiencies of TS, VS, TSS and VSS increased with the increase of pH in the alkaline range, electrolysis time and current density but decreased with the increase of initial sludge concentration. The application of electrochemical process using Ti/RuO2 electrodes enhanced the sludge disintegration for possible subsequent biological treatment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

44-49

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.H. Bruus, P.H. Nielsen and K. Keiding, On the stability of activated sludge flocs with implications to dewatering, Wat. Res., 26, pp.1597-1604, (1992).

DOI: 10.1016/0043-1354(92)90159-2

Google Scholar

[2] D.C. Sobeck and M.J. Higgins, Examination of three theories for mechanisms of cation induced bioflocculation, Wat. Res., 36, pp.527-538, (2002).

DOI: 10.1016/s0043-1354(01)00254-8

Google Scholar

[3] B. Jin, B.M. Wilen and P. Lant, Impacts of morphological, physical and chemical properties of sludge flocs on dewaterability of activated sludge, Chem. Eng., 98, pp.115-126, (2004).

DOI: 10.1016/j.cej.2003.05.002

Google Scholar

[4] P.R. Karr and T.M. Keinath, Influence of particle size on sludge dewatering, J. Wat. Pollut. Control Federation, 50, pp.1911-1930, (1978).

Google Scholar

[5] G. Surucu and F. D Cetin, Effect of temperature, pH and DO concentration on filterability and compressibility of activated sludge, Wat. Res., 23, pp.1389-1395, (1989).

DOI: 10.1016/0043-1354(89)90078-x

Google Scholar

[6] B.Q. Liao, D.G. Allen, G.G. Leppard, I.G. Droppo and S.N. Liss, Interparticle interactions affecting the stability of sludge flocs, J. Colloid and Interface Sci., 249, pp.372-380, (2002).

DOI: 10.1006/jcis.2002.8305

Google Scholar

[7] Y. Chen, H. Yang and G. Gu, Effect of acid surfactant treatment on activated sludge dewatering and settling, Wat. Res., 35, 2615-2620, (2001).

DOI: 10.1016/s0043-1354(00)00565-0

Google Scholar

[8] O.G. Apul, I. Atalar, G.T. Zorba and F.D. Sanin, The dewaterability of disintegrated sludge samples before and after anaerobic digestion, Drying Technol., 28, pp.901-909, (2010).

DOI: 10.1080/07373937.2010.490764

Google Scholar

[9] J. Pere, R. Alen, L. Viikari and L. Eriksson, Characterisation and dewatering of activated sludge from pulp and paper industry, Wat. Sci. Technol., 28, pp.193-201, (1993).

DOI: 10.2166/wst.1993.0046

Google Scholar

[10] J.H. Kwon, S.H. Ryu, K.Y. Park, I.T. Yeom and K.H. Ahn, Enhancement of sludge dewaterability by ozone treatment, J. Chin. Ins. Chem. Eng., 32, pp.555-558, (2001).

Google Scholar

[11] E. Neyens, J. Baeyens, R. Dewil and B. De heyder, Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering, J. Hazard. Mat. 106B, p.83–92, (2004).

DOI: 10.1016/j.jhazmat.2003.11.014

Google Scholar

[12] E. Neyens and J. Bayeyens, A review of thermal sludge pretreatment processes to improve dewaterability, J. Hazard. Mat., 98, pp.51-67, (2003).

Google Scholar

[13] H. Yuan, N. Zhu and F. Song, Dewaterability characteristics of sludge conditioned with surfactants pretreatment by electrolysis, Bioresource Technol., 102, pp.2308-2315, (2011).

DOI: 10.1016/j.biortech.2010.10.065

Google Scholar

[14] A.R. Andrade, P.D.P. Alves, C.H.V. Fidellis, P.M. Donate and J.F.C. Boodts, Ethanol electrooxidation in ruthenium-oxide-coated titanium electrodes, J. Electrochem. Society, 145, pp.3839-3843, (1998).

DOI: 10.1149/1.1838882

Google Scholar

[15] G. Chen, X. Chen and P.L. Yue, Electrochemical behavior of novel Ti/IrOx-Sb2O5-SnO2 anodes, J. Phys. Chem. B., 106, pp.4364-4369, (2002).

Google Scholar

[16] H. Li, Y. Chen, Y. Zhang, W. Han, X. Sun, J. Li and L. Wang, Preparation of Ti/PbO2–Sn anodes for electrochemical degradation of phenol, J. Electroanalytical Chem., 689, pp.193-200, (2013).

DOI: 10.1016/j.jelechem.2012.11.035

Google Scholar

[17] H. Ding, Y. Feng and J. Liu, Preparation and properties of Ti/SnO2-Sb2O5 electrodes by electrodeposition, Mat. Letters, 61, pp.4920-4923, (2007).

DOI: 10.1016/j.matlet.2007.03.073

Google Scholar

[18] L.J. Song, N.W. Zhu, H.P. Yuan, Y. Hong, J. Ding, Enhancement of waste activated sludge aerobic digestion by electrochemical pre-treatment, Water Res. 44 (2010) 4371–4378.

DOI: 10.1016/j.watres.2010.05.052

Google Scholar

[19] C. Comninellis and G.P. Vercesi Characterization of DSA®-type oxygen evolving electrodes: choice of a coating, J. Appl. Electrochem., 21, pp.335-345, (1991).

DOI: 10.1007/bf01020219

Google Scholar

[20] C.R. Costa, C.M.R. Botta, E.L.G. Espindola and P. Olivi, Eletrochemical treatment of tannery wastewater using DSA® electrodes, J. Hazard. Mat., 153, pp.616-624, (2008).

DOI: 10.1016/j.jhazmat.2007.09.005

Google Scholar

[21] R.D. Coteiro and A.R. De Andrade, Electrochemical oxidation of 4-chlorophenol and its by-products using Ti/Ru0. 3M0. 7O2 (M = Ti or Sn) anodes: preparation route versus degradation efficiency, J. Appl. Electrochem., 37, pp.691-698, (2007).

DOI: 10.1007/s10800-007-9301-9

Google Scholar

[22] Y.J. Feng, Y. Cui, B. Logan and Z. Liu, Perfomance of Gd-doped Ti-based Sb-SnO2 anodes for electrochemical destruction of phenol, Chemosphere, 70, pp.1629-1639, (2008).

DOI: 10.1016/j.chemosphere.2007.07.083

Google Scholar

[23] Y. Feng and X. Li, Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution, Wat. Res., 37, pp.2399-2407, (2003).

DOI: 10.1016/s0043-1354(03)00026-5

Google Scholar

[24] M. Ferreira, H. Varela, R.M. Torresi and G. Tremiliosi-Filho, Electrodes passivation caused by polymerization of different phenolic compounds, Electrochimica A-cta, 52, pp.434-442, (2006).

DOI: 10.1016/j.electacta.2006.05.025

Google Scholar

[25] J.C. Forti, P. Olivi and A.R. De Andrade, Characterization of DSA®-type coatings with nominal composition Ti/Ru0. 3Ti(0. 7-x)SnxO2 prepared via a polymeric precursor, Electrochimica Acta., 47, pp.913-920, (2001).

DOI: 10.1016/s0013-4686(01)00791-5

Google Scholar

[26] R.G. Freitas, R.T.S. Oliveira, M.C. Santos, L.O.S. Bulhões and E.C. Pereira, Preparation of Pt thin film electrodes using the Pechini method, Mat. Letters, 60, pp.1906-1910, (2006).

DOI: 10.1016/j.matlet.2005.12.050

Google Scholar

[27] E.C.P.E. Rodrigues and P. Olivi, Preparation and characterization of Sb-doped SnO2 films with controlled stoichiometry from polymeric precursors, J. Phys. and Chem. of solids, 64, pp.1105-1112, (2003).

DOI: 10.1016/s0022-3697(03)00003-9

Google Scholar

[28] R.A. Torresa, V. Sarria, W. Torres, P. Peringera and C. Pulgarina, Electrochemical treatment of industrial wastewater containing 5-amino-6-methyl-2-benzimidazolone: toward an electrochemical-biological coupling, Wat. Res., 37, pp.3118-3124, (2003).

DOI: 10.1016/s0043-1354(03)00179-9

Google Scholar

[29] APHA . 2005. Standard Methods for the Examination of Water and Wastewater. 21st ed. American Public Health Association, Washington D. C., USA.

Google Scholar

[30] Hach. 2003. Water Analysis Handbook. 4th ed. Loveland, CO, USA: Hach Company.

Google Scholar

[31] E. Neyens, J. Baeyens, R. Dewil, B. De heyder, Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering, J. Hazard. Mat., 106B, p.83–92, (2004).

DOI: 10.1016/j.jhazmat.2003.11.014

Google Scholar