Kinetic Study of PAHs Degradation in Produced Water Using Ti/RuO2 Anode

Article Preview

Abstract:

Oil production offshore and onshore results in production of huge amount of water, called produced water (PW). PW is one of source of polycyclic aromatic hydrocarbons PAHs to the aquatic environment. Degradation kinetics of 16 priority PAHs were studied in PW treatment using Ti/RuO2 anode in a batch setupat three different current densities 3.33, 6.67 and 10 mA/cm2. GC-MS was used for quantification of each PAH. Kinetics study confirmed that electrochemical degradation of all PAHs had follow first-order kinetic using Ti/ RuO2. Results showed that values of rate constant k were increase by increasing current density.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

80-85

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Pavlova, R. Ivanova, Determination of petroleum hydrocarbons and polycyclic aromatic hydrocarbons in sludge from wastewater treatment basins, J. Environ. Monit. 5 (2003) 319–323.

DOI: 10.1039/b208157c

Google Scholar

[2] Y. H. Cui, X. Y. Li, G. Chen, Electrochemical degradation of bisphenol A on different anodes, Water Res. 43 (7) (2009) 1968–(1976).

Google Scholar

[3] C. A. Martinez-Huitle, A. De Battisti, S. Ferro, S. Reyna, M. Cerro-Lopez, and M. A. Quiro, "Removal of the pesticide methamidophos from aqueous solutions by electrooxidation using Pb/PbO2, Ti/SnO2, and Si/BDD electrodes, Environ. Sci. Tech. 42 (18) (2008).

DOI: 10.1021/es8008419

Google Scholar

[4] A. Yaqub, H. Ajab, M.H. Isa, H. Jusoh, M. Junaid, R. Farooq, Effect of ultrasound and electrode material on electrochemical treatment of industrial wastewater. J New Mater. Electrochem. Systems, 15, 289 (2012).

DOI: 10.14447/jnmes.v15i4.49

Google Scholar

[5] C. A. Martinez-Huitle, S. Ferro, Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem. Soc. Rev. 35(12) (2006)1324-1340.

DOI: 10.1039/b517632h

Google Scholar

[6] A. Yaqub, H. Ajab, Applications of sonoelectrochemistry in wastewater treatment system. Rev. Chem. Eng. 29(2) (2013) 123-130.

Google Scholar

[7] F. Montilla, E. Morallon, J. L. Vazquez, Evaluation of the electrocatalytic activity of antimony-doped tin dioxide anodes toward the oxidation of phenol in aqueous solutions, J. Electrochem. Soc. 152 (10) (2005) B421–B427.

DOI: 10.1149/1.2013047

Google Scholar

[8] R. Tolba, M. Tian, J. Wen, Z. -H. Jiang, A. Chen, Electrochemical oxidation of lignin at IrO2-based oxide electrodes, J. Electroanal. Chem. (2010).

DOI: 10.1016/j.jelechem.2009.12.013

Google Scholar

[9] J. Gaudet, A.C. Tavares, S. Trasatti, D. Guay, Physicochemical characterization of mixed RuO2–SnO2 solid solutions, Chem. Mater. 17 (2005) 1570–1579.

DOI: 10.1021/cm048129l

Google Scholar

[10] R.F. Yunus, Yu-Ming Zheng, K.G.N. Nanayakkara, J.P. Chen, Electrochemical Removal of Rhodamine 6G by Using RuO2 Coated Ti DSA. Ind. Eng. Chem. Res. 48 (2009), 7466–7473.

DOI: 10.1021/ie801719b

Google Scholar

[11] M. Panizza, C. Bocca and G. Cerisola, Electrochemical Treatment of Wastewater Containing Polyaromatic Organic Pollutants, Water Res. 34 (9) (2000) 2601-2605.

DOI: 10.1016/s0043-1354(00)00145-7

Google Scholar

[12] M. Panizza. Chapter. Importance of Electrode Material in the Electrochemical Treatment of Wastewater Containing Organic Pollutants. In (Editor Ch. Comninellis, G. Chen), Electrochemistry for the Environment. Springer Science. (2010).

DOI: 10.1007/978-0-387-68318-8_2

Google Scholar

[13] A. Yaqub, M. H. Isa, S. R. M. Kutty, H. Ajab. Surface Characteristics of Ti/IrO2 Anode Material and its Electrocatalytic Properties for Polycyclic Aromatic Hydrocarbons (PAHs) Degradation in Aqueous Solution. J. New Mater. Electrochem. Sys. (2014).

DOI: 10.14447/jnmes.v17i1.442

Google Scholar

[14] A. Yaqub, M. H. Isa, S. R. M. Kutty. Electrochemical Oxidation of PAHs in Aqueous Solution., in Developments in Sustainable Chemical and Bioprocess Technology, pp.89-96. Springer US, (2013).

DOI: 10.1007/978-1-4614-6208-8_12

Google Scholar

[15] Y. AlSalka, F. Karabet, M. S. Hashem, Removal Efficiency of Polycyclic Aromatic Hydrocarbons from Synthetic Water Samples by Electrocoagulation Processes. Damascus Uni. J. for BASIC SCIENCES. 27 (2011) 65-80.

Google Scholar

[16] J. Muff, E. G. Søgaard. Electrochemical degradation of PAH compounds in process water: a kinetic study on model solutions and a proof of concept study on runoff water from harbour sediment purification. Water Sci. Technol., 61(8)(2010).

DOI: 10.2166/wst.2010.129

Google Scholar