[1]
A. Pavlova, R. Ivanova, Determination of petroleum hydrocarbons and polycyclic aromatic hydrocarbons in sludge from wastewater treatment basins, J. Environ. Monit. 5 (2003) 319–323.
DOI: 10.1039/b208157c
Google Scholar
[2]
Y. H. Cui, X. Y. Li, G. Chen, Electrochemical degradation of bisphenol A on different anodes, Water Res. 43 (7) (2009) 1968–(1976).
Google Scholar
[3]
C. A. Martinez-Huitle, A. De Battisti, S. Ferro, S. Reyna, M. Cerro-Lopez, and M. A. Quiro, "Removal of the pesticide methamidophos from aqueous solutions by electrooxidation using Pb/PbO2, Ti/SnO2, and Si/BDD electrodes, Environ. Sci. Tech. 42 (18) (2008).
DOI: 10.1021/es8008419
Google Scholar
[4]
A. Yaqub, H. Ajab, M.H. Isa, H. Jusoh, M. Junaid, R. Farooq, Effect of ultrasound and electrode material on electrochemical treatment of industrial wastewater. J New Mater. Electrochem. Systems, 15, 289 (2012).
DOI: 10.14447/jnmes.v15i4.49
Google Scholar
[5]
C. A. Martinez-Huitle, S. Ferro, Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem. Soc. Rev. 35(12) (2006)1324-1340.
DOI: 10.1039/b517632h
Google Scholar
[6]
A. Yaqub, H. Ajab, Applications of sonoelectrochemistry in wastewater treatment system. Rev. Chem. Eng. 29(2) (2013) 123-130.
Google Scholar
[7]
F. Montilla, E. Morallon, J. L. Vazquez, Evaluation of the electrocatalytic activity of antimony-doped tin dioxide anodes toward the oxidation of phenol in aqueous solutions, J. Electrochem. Soc. 152 (10) (2005) B421–B427.
DOI: 10.1149/1.2013047
Google Scholar
[8]
R. Tolba, M. Tian, J. Wen, Z. -H. Jiang, A. Chen, Electrochemical oxidation of lignin at IrO2-based oxide electrodes, J. Electroanal. Chem. (2010).
DOI: 10.1016/j.jelechem.2009.12.013
Google Scholar
[9]
J. Gaudet, A.C. Tavares, S. Trasatti, D. Guay, Physicochemical characterization of mixed RuO2–SnO2 solid solutions, Chem. Mater. 17 (2005) 1570–1579.
DOI: 10.1021/cm048129l
Google Scholar
[10]
R.F. Yunus, Yu-Ming Zheng, K.G.N. Nanayakkara, J.P. Chen, Electrochemical Removal of Rhodamine 6G by Using RuO2 Coated Ti DSA. Ind. Eng. Chem. Res. 48 (2009), 7466–7473.
DOI: 10.1021/ie801719b
Google Scholar
[11]
M. Panizza, C. Bocca and G. Cerisola, Electrochemical Treatment of Wastewater Containing Polyaromatic Organic Pollutants, Water Res. 34 (9) (2000) 2601-2605.
DOI: 10.1016/s0043-1354(00)00145-7
Google Scholar
[12]
M. Panizza. Chapter. Importance of Electrode Material in the Electrochemical Treatment of Wastewater Containing Organic Pollutants. In (Editor Ch. Comninellis, G. Chen), Electrochemistry for the Environment. Springer Science. (2010).
DOI: 10.1007/978-0-387-68318-8_2
Google Scholar
[13]
A. Yaqub, M. H. Isa, S. R. M. Kutty, H. Ajab. Surface Characteristics of Ti/IrO2 Anode Material and its Electrocatalytic Properties for Polycyclic Aromatic Hydrocarbons (PAHs) Degradation in Aqueous Solution. J. New Mater. Electrochem. Sys. (2014).
DOI: 10.14447/jnmes.v17i1.442
Google Scholar
[14]
A. Yaqub, M. H. Isa, S. R. M. Kutty. Electrochemical Oxidation of PAHs in Aqueous Solution., in Developments in Sustainable Chemical and Bioprocess Technology, pp.89-96. Springer US, (2013).
DOI: 10.1007/978-1-4614-6208-8_12
Google Scholar
[15]
Y. AlSalka, F. Karabet, M. S. Hashem, Removal Efficiency of Polycyclic Aromatic Hydrocarbons from Synthetic Water Samples by Electrocoagulation Processes. Damascus Uni. J. for BASIC SCIENCES. 27 (2011) 65-80.
Google Scholar
[16]
J. Muff, E. G. Søgaard. Electrochemical degradation of PAH compounds in process water: a kinetic study on model solutions and a proof of concept study on runoff water from harbour sediment purification. Water Sci. Technol., 61(8)(2010).
DOI: 10.2166/wst.2010.129
Google Scholar