[1]
Andersson N, Eriksson LE, Davidson L. A study of Mach 0. 75 jets and their radiated sound using large eddy simulation, AIAA-2004-3024.
DOI: 10.2514/6.2004-3024
Google Scholar
[2]
P.S. Tide, V. Babu a, Numerical predictions of noise due to subsonic jets from nozzles with and without chevrons, Applied Acoustics 70 (2009) 321–332.
DOI: 10.1016/j.apacoust.2008.03.006
Google Scholar
[3]
C. K. W. Tam, M. Golebiowski, and J. M. Seiner, Parametric Testing of Chevrons on Single Flow Hot Jets, AIAA-96-1716, 2nd AIAA/CEAS Aeroacoustics Conference, State College, PA, May 6-8, (1996).
DOI: 10.2514/6.2004-2824
Google Scholar
[4]
Wang Z J. High-order methods for the Euler and Navier-Stokes equations on unstructured grids. Progress in Aerospace Sciences 43 (2007) 1-41.
DOI: 10.1016/j.paerosci.2007.05.001
Google Scholar
[5]
Ekaterinaris JA. High-order accurate, low numerical diffusion methods for aerodynamics. Progress in Aerospace Sciences 41(3-4) (2005) 192-300.
DOI: 10.1016/j.paerosci.2005.03.003
Google Scholar
[6]
X.G. Deng, M.L. Mao, G.H. Tu and H.X. Zhang, Geometric Conservation Law and Applications to High-Order Finite Difference Schemes with Stationary Grids, J. Comput. Phys. 230 (2011) 1100–1115.
DOI: 10.1016/j.jcp.2010.10.028
Google Scholar
[7]
R.M. Visbal, D.V. Gaitonde, On the Use of higher-order finite-difference schemes on curvilinear and deforming meshes, J. Comput. Phys. 181 (2002) 155-185.
DOI: 10.1006/jcph.2002.7117
Google Scholar
[8]
T. Nonomura, N. Iizuka, K. Fujii, Freestream and vortex preservation properties of high-order WENO and WCNS on curvilinear grids, Computers and Fluids 39 (2010) 197-214.
DOI: 10.1016/j.compfluid.2009.08.005
Google Scholar
[9]
P.D. Thomas, C.K. Lombard, Geometric conservation law and its application to flow computations on moving grids, AIAA J. 17(10) (1979) 1030– 1037.
DOI: 10.2514/3.61273
Google Scholar
[10]
T.H. Pulliam, J.L. Steger, On implicit finite-difference simulations of three-dimensional flow, AIAA Paper 78–10, (1978).
DOI: 10.2514/6.1978-10
Google Scholar
[11]
Xiaogang Deng, Yi Jiang, Meiliang Mao, Huayong Liu, Guohua Tu, Developing Hybrid cell-edge and cell-node Dissipative Compact Scheme for Complex Geometry Flows, Sci China Tech Sci 56(2013): 2361-2369.
DOI: 10.1007/s11431-013-5339-6
Google Scholar
[12]
Xiaogang Deng, Yi Jiang, Meiliang Mao, Huayong Liu, Song Li, Guohua Tu, A family of hybrid cell-edge and cell-node dissipative compact schemes satisfying geometric conservation law, submitted to Communications in Computational Physics.
DOI: 10.1016/j.compfluid.2015.04.015
Google Scholar
[13]
X.G. Deng, M.L. Mao, G.H. Tu, Y.F. Zhang, H.X. Zhang, Extending Weighted Compact Nonlinear Schemes to Complex Grids with Characteristic-Based Interface Conditions, AIAA J. 48(12) (2010) 2840-2851.
DOI: 10.2514/1.j050285
Google Scholar
[14]
Guohua Tu, Xiogang Deng, Meiliang Mao, Implementing High-Order Weighted Compact Nonlinear Scheme on Patched Grids with a Nonlinear Interpolation, Computers and Fluids, 2013, 77: 181-193.
DOI: 10.1016/j.compfluid.2013.02.015
Google Scholar
[15]
Yi Jiang, Meiliang Mao, Xiaogang Deng and Huayong Liu, Large eddy simulation on curvilinear meshes using seventh-order dissipative compact scheme, Submitted to Chinese Journal of Aeronautics.
DOI: 10.1016/j.compfluid.2014.08.003
Google Scholar
[16]
J.P. Boris, F.F. Grinstein, E.S. Oran, R.L. Kolbe, New insights into large eddy simulation, Fluid Dyn. Res. 10 (1992) 199.
DOI: 10.1016/0169-5983(92)90023-p
Google Scholar
[17]
Yi Jiang, Meiliang Mao, Xiaogang Deng and Huayong Liu, Extending seventh-order dissipative compact scheme satisfying geometric conservation law to large eddy simulation on curvilinear grids, Submitted to Advances in Applied Mathematics and Mechanics.
DOI: 10.4208/aamm.2013.m404
Google Scholar
[18]
Yi Jiang, Meiliang Mao, Xiaogang Deng, Huayong Liu, Song Li, Zhenguo Yan, Extending seventh-order hybrid cell-edge and cell-node dissipative compact scheme to complex grids, The 4th Asian Symposium on Computational Heat Transfer and Fluid Flow, Hong Kong, 3-6 June (2013).
Google Scholar
[19]
A. S. Lyrintzis, Surface integral methods in computational aeroacoustics – from the (CFD) near-field to the (acoustic) far-field. Int J Aeroacoust 2003; 2(2): 95–128.
DOI: 10.1260/147547203322775498
Google Scholar
[20]
Tam C.K.W. and Webb J.C., Dispersion-relation-preserving finite difference schemes for computational acoustics, Journal of Computational Physics, 107, 1993: 262-281.
DOI: 10.1006/jcph.1993.1142
Google Scholar
[21]
John M. Hsu and Antony Jameson, An Implicit-Explicit Hybrid Scheme for Calculating Complex Unsteady Flows, AIAA 2002-0714.
DOI: 10.2514/6.2002-714
Google Scholar
[22]
Gordnier RE, Visbal MR, Numerical simulation of delta-wing roll, AIAA Paper 93-0554, January (1993).
DOI: 10.2514/6.1993-554
Google Scholar
[23]
Xiaogang Deng, Yaobing Min, Meiliang Mao, Huayong Liu, Guohua Tu, Further studies on geometric conservation law and applications to high-order finite difference schemes with stationary grids, J. Comput. Phys 239 (2013) 90–111.
DOI: 10.1016/j.jcp.2012.12.002
Google Scholar
[24]
Poinsot T, Lele S K., Boundary Conditions for Direct Simulations of Compressible Viscous Flows, J. Comput. Phys. 101(1992) 104-129.
DOI: 10.1016/0021-9991(92)90046-2
Google Scholar
[25]
Daniel J. Bodony, Analysis of sponge zones for computational fluid mechanics, J. Comput. Phys. 212 (2006) 681-702.
DOI: 10.1016/j.jcp.2005.07.014
Google Scholar