The Singularity of Stress near the Tip of a Crack Perpendicular to an Elastically Mismatched Bimaterial Interface

Article Preview

Abstract:

This Based on the elastic theory of a crack perpendicular to and terminating at bimaterial interface, a generalized expression of the stress intensity factor is provided for a crack in single material and a crack perpendicular to bimaterial interface, finite element methods are used to calculate the stress intensity factors. The influences of the material combination and crack length on the the stress intensity factors were investigated. Results show that when the crack terminates at bimaterial interface, singular order of KIis different from that of single material, and the values of KI increase with increasing E1/E2 and μ1/μ2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

48-52

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. R. Zak, M. L. Williams, Crack point stress singularities at a bi-material interface, J. Appl. Mech., 30 (1963) 142-143.

DOI: 10.1115/1.3630064

Google Scholar

[2] T. S. Cook, F. Erdogan, Stresses in bonded materials with a crack perpendicular to the interface, Int. J. Eng. Sci., 10(1972) 677-697.

DOI: 10.1016/0020-7225(72)90063-8

Google Scholar

[3] W.C. Wang, J.T. Chen, Theoretical and experimental re-examination of a crack at a bimaterial interface, J. Strain Anal., 28(1993) 53–61.

Google Scholar

[4] D. H. Chen, A crack normal to and terminating at a bimaterial interface, Engng. Fract. Mech., 49 (1994) 517-532.

Google Scholar

[5] S. A. Meguid, M. Tan and Z. H. Zhu, Analysis of cracks perpendicular to bimaterial interfaces using a novel finite element, Int. J. Fract., 73 (1995) 1-23.

DOI: 10.1007/bf00039848

Google Scholar

[6] W. K. Lim, C. S. Lee, Evaluation of stress intensity factor a crack normal to bimaterial interface using isoparametric finite elements, Engng. Fract. Mech., 52(1995) 65-70.

DOI: 10.1016/0013-7944(94)00327-e

Google Scholar

[7] S. Lahiri, B. V. Sankar, P. A. Mataga, Evaluation of bimaterial stress intensity factors using a finite element –boundary element alternating method, Engng. Fract. Mech., 53(1996) 289-302.

DOI: 10.1016/0013-7944(94)00302-5

Google Scholar

[8] K. Kaddouri, M. Belhouari, B. Bachir Bouiadjra, B. Serier, Finite element analysis of crack perpendicular to bi-material interface: Case of couple ceramic–metal[J], Computational Materials Science, 2006, 35: 53–60.

DOI: 10.1016/j.commatsci.2005.03.003

Google Scholar

[9] J. Chang and J. Q. Xu, The singular stress field and stress intensity factors of a crack terminating at a bi-material interface, Int. J. Mechanical Sciences, 49 (2007) 888-897.

DOI: 10.1016/j.ijmecsci.2006.11.009

Google Scholar

[10] L. Marsavina and T. Sadowski, Crack – Interface Interaction in Composite Materials, In. Security and Reliability of Damaged Structures and Defective Materials, G. Pluvinage and A. Sedmak eds. (2009) 139-155.

DOI: 10.1007/978-90-481-2792-4_6

Google Scholar

[11] L. Marsavina, T. Sadowski and N. Faur, Asymptotic stress field for a crack normal to a ceramic– metal interface, Key Engng. Mater., 417-418 (2010) 489-492.

DOI: 10.4028/www.scientific.net/kem.417-418.489

Google Scholar

[12] Chang-Rong Chen, Yiu-Wing Mai, Comparison of cohesive zone model and linear elastic fracture mechanics for a mode I crack near a compliant/stiff interface, Engng. Fract. Mech., 77(2010) 3408-3417.

DOI: 10.1016/j.engfracmech.2010.09.009

Google Scholar

[13] Liviu Marsavina1, Tomasz Sadowski, Nicolae Faur. Numerical investigation of the stress field near a crack normal to ceramic–metal interface. Journal of Mechanical Science and Technology, 25(2011) 309-315.

DOI: 10.1007/s12206-010-1209-3

Google Scholar