[1]
Chang, C. C., Lin, C. J., Training v-support vector classifiers: theory and algorithms, Neural Computation, 14(2002)43-54.
Google Scholar
[2]
Marizio, M. D., Taylor, C. C., Kernel density classification and boosting: an L2 analysis, Statistics and Computing, 15(2)(2005) 13-123.
Google Scholar
[3]
Tax, D. M.J., Duin, R. P. W., Support vector data description, Machine Learning, 54(1)(2004)45-66.
DOI: 10.1023/b:mach.0000008084.60811.49
Google Scholar
[4]
Wu, M. R., Ye, J. P., A small sphere and large margin approach for novelty detection using training data with outlier, IEEE Transaction on Pattern Analysis and Machine Intelligence, 31(11), p.2088-(2092).
DOI: 10.1109/tpami.2009.24
Google Scholar
[5]
Hu, W. J., Chung, F. L., Wang, S. T., The maximum vector-angular margin classifier and its fast training on large datasets using a core vector machine, Neural Networks, 27(2012) 60-73.
DOI: 10.1016/j.neunet.2011.10.005
Google Scholar
[6]
Takahashi, N., Nishi, T., Rigorous proof of termination of SMO algorithm for support vector machines, IEEE Transaction on Neural Networks, 16(3)(2005) 774-776.
DOI: 10.1109/tnn.2005.844857
Google Scholar
[7]
Tsang, I. W., Kwok, J. T., Cheung, P. M., Core Vector Machine: Fast SVM training on very large data sets, Journal of Machine Learning Research, 6(2005) 363-392.
Google Scholar
[8]
Tsang, I. W., Kwok, J.T., Zurada, J. M., Generalized core vector machines, IEEE Transactions on Neural Networks, 17(5)(2006) 1126-1140.
DOI: 10.1109/tnn.2006.878123
Google Scholar
[9]
Wang, C. D., Lai, J. H., Position regularized Support Vector Domain Description, Pattern Recognition 46(2013)75-884.
DOI: 10.1016/j.patcog.2012.09.018
Google Scholar