Thermal Stability of an Axial-Compressed Open-Tip Carbon Nanocone

Article Preview

Abstract:

This paper used molecular dynamics (MD) simulations to investigate thermal stability of an axial compressed open-tip carbon nanocone, which have an apex angle of 19.2°. To study the thermal stability, the carbon nanocone was first compressed axially up to the compression strain near its critical strain for buckling. Temperature of carbon nanocone was then increased gradually and the corresponding axial force in the carbon nanocone was monitored to examine the thermal stability of the carbon nanocone. It was found that the critical temperature for thermal instability grows with the decrease of the initial compressed strain. Comparing with the buckling mode of the carbon nanocone, the thermal instability mode displayed a swelling configuration rather than a deflective configuration of the buckling mode. The interesting finding would be helpful for applications of open-tip carbon nanocones.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

227-230

Citation:

Online since:

June 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Ge, K. Sattler, Observation of fullerene cones, Chem. Phys. Lett. 220 (1994) 192-196.

Google Scholar

[2] A. Krishnan, E. Dujardin, M.M.J. Treacy, J. Hugdhl, S. Lynum, T.W. Ebbesen, Graphitic cones and the nucleation of curved carbon surfaces, Nature 388 (1997) 451-454.

DOI: 10.1038/41284

Google Scholar

[3] S.N. Naess, A. Elgsaeter, G. Helgesen, K.D. Knudsen, Carbon nanocones: wall structure and morphology, Science and Technology of Advanced Materials 10 (2009) 065002.

DOI: 10.1088/1468-6996/10/6/065002

Google Scholar

[4] H. Terrones, T. Hayashi, M. Muñoz-Navia, M. Terrones, Y.A. Kim, N. Grobert, R. Kamalakaran, J. Dorantes-Davila, R. Escudero, M.S. Dresselhaus, M. Endo, Graphitic cones in palladium catalysed carbon nanofibers, Chem. Phys. Lett. 343 (2001) 241-250.

DOI: 10.1016/s0009-2614(01)00718-7

Google Scholar

[5] M. Endo, Y.A. Kim, T. Hayashi, Y. Fukai, K. Oshida, M. Terrones, T. Yanagisawa, S. Higaki, M.S. Dresselhaus, Structural characterization of cup-stacked-type nanofibers with an entirely hollow core, Appl. Phys. Lett. 80 (2002) 1267.

DOI: 10.1063/1.1450264

Google Scholar

[6] B. Eksioglu, A. Nadarajah, Structural analysis of conical carbon nanofibers, Carbon 44 (2006) 360-373.

DOI: 10.1016/j.carbon.2005.07.007

Google Scholar

[7] I. Levchenko, K. Ostrikov, J.D. Long, S. Xu, Plasma-assisted self-sharpening of platelet-structured single-crystalline carbon nanocones, Appl. Phys. Lett. 91 (2007) 113115.

DOI: 10.1063/1.2784932

Google Scholar

[8] C. Chen, L.H. Chen, A. Gapin, S. Jin, L. Yuan, S.H. Liou, Iron-platinum-coated carbon nanocone probes on tipless cantilevers for high resolution magnetic force imaging, Nanotechnology 19 (2008) 075501.

DOI: 10.1088/0957-4484/19/7/075501

Google Scholar

[9] J. Sripirom, S. Noor, U. Koehler, A. Schulte, Easily made and handled carbon nanocones for scanning tunneling microscopy and electroanalysis, Carbon 49 (2011) 2402-2412.

DOI: 10.1016/j.carbon.2011.02.007

Google Scholar

[10] S.S. Yu, W.T. Zheng, Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons, Nanoscale 2 (2010) 1069-1082.

DOI: 10.1039/c0nr00002g

Google Scholar

[11] S.P. Jordan, V.H. Crespi, Theory of carbon nanocones: mechanical chiral inversion of a micron-scale three-dimensional object, Phys. Rev. Lett. 93 (2004) 255504.

DOI: 10.1103/physrevlett.93.255504

Google Scholar

[12] P.C. Tsai, T.H. Fang, A molecular dynamics study of the nucleation, thermal stability and nanomechanics of carbon nanocones, Nanotechnology 18 (2007) 105702.

DOI: 10.1088/0957-4484/18/10/105702

Google Scholar

[13] K.M. Liew, J.X. Wei, X.Q. He, Carbon nanocones under compression: buckling and post-buckling behaviors, Phys. Rev. B 75 (2007) 195435.

DOI: 10.1103/physrevb.75.195435

Google Scholar

[14] J.X. Wei, K.M. Liew, X.Q. He, Mechanical properties of carbon nanocones, Appl. Phys. Lett. 91 (2007) 261906.

DOI: 10.1063/1.2813017

Google Scholar

[15] M.L. Liao, C.H. Cheng, Y.P. Lin, Tensile and compressive behaviors of open-tip carbon nanocones under axial strains, J. Mater. Research 26 (2011) 1577-1584.

DOI: 10.1557/jmr.2011.160

Google Scholar

[16] J. Tersoff, New empirical model for the structural properties of silicon, Phys. Rev. Lett. 56 (1986) 632-635.

DOI: 10.1103/physrevlett.56.632

Google Scholar

[17] J. Tersoff, Modeling solid-state chemistry: interatomic potentials for multi-component systems, Phys. Rev. B 39 (1989) 5566-5568.

DOI: 10.1103/physrevb.39.5566

Google Scholar

[18] D.C. Rapaport, The Art of Molecular Dynamics Simulations, Cambridge University Press, Cambridge, (2004).

Google Scholar

[19] S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 81 (1984) 511-519.

DOI: 10.1063/1.447334

Google Scholar

[20] W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions, Phys. Rev. A 31 (1985) 1695-1697.

DOI: 10.1103/physreva.31.1695

Google Scholar