[1]
M. Ge, K. Sattler, Observation of fullerene cones, Chem. Phys. Lett. 220 (1994) 192-196.
Google Scholar
[2]
A. Krishnan, E. Dujardin, M.M.J. Treacy, J. Hugdhl, S. Lynum, T.W. Ebbesen, Graphitic cones and the nucleation of curved carbon surfaces, Nature 388 (1997) 451-454.
DOI: 10.1038/41284
Google Scholar
[3]
S.N. Naess, A. Elgsaeter, G. Helgesen, K.D. Knudsen, Carbon nanocones: wall structure and morphology, Science and Technology of Advanced Materials 10 (2009) 065002.
DOI: 10.1088/1468-6996/10/6/065002
Google Scholar
[4]
H. Terrones, T. Hayashi, M. Muñoz-Navia, M. Terrones, Y.A. Kim, N. Grobert, R. Kamalakaran, J. Dorantes-Davila, R. Escudero, M.S. Dresselhaus, M. Endo, Graphitic cones in palladium catalysed carbon nanofibers, Chem. Phys. Lett. 343 (2001) 241-250.
DOI: 10.1016/s0009-2614(01)00718-7
Google Scholar
[5]
M. Endo, Y.A. Kim, T. Hayashi, Y. Fukai, K. Oshida, M. Terrones, T. Yanagisawa, S. Higaki, M.S. Dresselhaus, Structural characterization of cup-stacked-type nanofibers with an entirely hollow core, Appl. Phys. Lett. 80 (2002) 1267.
DOI: 10.1063/1.1450264
Google Scholar
[6]
B. Eksioglu, A. Nadarajah, Structural analysis of conical carbon nanofibers, Carbon 44 (2006) 360-373.
DOI: 10.1016/j.carbon.2005.07.007
Google Scholar
[7]
I. Levchenko, K. Ostrikov, J.D. Long, S. Xu, Plasma-assisted self-sharpening of platelet-structured single-crystalline carbon nanocones, Appl. Phys. Lett. 91 (2007) 113115.
DOI: 10.1063/1.2784932
Google Scholar
[8]
C. Chen, L.H. Chen, A. Gapin, S. Jin, L. Yuan, S.H. Liou, Iron-platinum-coated carbon nanocone probes on tipless cantilevers for high resolution magnetic force imaging, Nanotechnology 19 (2008) 075501.
DOI: 10.1088/0957-4484/19/7/075501
Google Scholar
[9]
J. Sripirom, S. Noor, U. Koehler, A. Schulte, Easily made and handled carbon nanocones for scanning tunneling microscopy and electroanalysis, Carbon 49 (2011) 2402-2412.
DOI: 10.1016/j.carbon.2011.02.007
Google Scholar
[10]
S.S. Yu, W.T. Zheng, Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons, Nanoscale 2 (2010) 1069-1082.
DOI: 10.1039/c0nr00002g
Google Scholar
[11]
S.P. Jordan, V.H. Crespi, Theory of carbon nanocones: mechanical chiral inversion of a micron-scale three-dimensional object, Phys. Rev. Lett. 93 (2004) 255504.
DOI: 10.1103/physrevlett.93.255504
Google Scholar
[12]
P.C. Tsai, T.H. Fang, A molecular dynamics study of the nucleation, thermal stability and nanomechanics of carbon nanocones, Nanotechnology 18 (2007) 105702.
DOI: 10.1088/0957-4484/18/10/105702
Google Scholar
[13]
K.M. Liew, J.X. Wei, X.Q. He, Carbon nanocones under compression: buckling and post-buckling behaviors, Phys. Rev. B 75 (2007) 195435.
DOI: 10.1103/physrevb.75.195435
Google Scholar
[14]
J.X. Wei, K.M. Liew, X.Q. He, Mechanical properties of carbon nanocones, Appl. Phys. Lett. 91 (2007) 261906.
DOI: 10.1063/1.2813017
Google Scholar
[15]
M.L. Liao, C.H. Cheng, Y.P. Lin, Tensile and compressive behaviors of open-tip carbon nanocones under axial strains, J. Mater. Research 26 (2011) 1577-1584.
DOI: 10.1557/jmr.2011.160
Google Scholar
[16]
J. Tersoff, New empirical model for the structural properties of silicon, Phys. Rev. Lett. 56 (1986) 632-635.
DOI: 10.1103/physrevlett.56.632
Google Scholar
[17]
J. Tersoff, Modeling solid-state chemistry: interatomic potentials for multi-component systems, Phys. Rev. B 39 (1989) 5566-5568.
DOI: 10.1103/physrevb.39.5566
Google Scholar
[18]
D.C. Rapaport, The Art of Molecular Dynamics Simulations, Cambridge University Press, Cambridge, (2004).
Google Scholar
[19]
S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 81 (1984) 511-519.
DOI: 10.1063/1.447334
Google Scholar
[20]
W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions, Phys. Rev. A 31 (1985) 1695-1697.
DOI: 10.1103/physreva.31.1695
Google Scholar