[1]
G. Azzouzi, W. Tazibt, Improving silicon solar cell efficiency by using the impurity photovoltaic effect, Energy Procedia 41 (2013) pp.40-49.
DOI: 10.1016/j.egypro.2013.09.005
Google Scholar
[2]
M.Z. Rahman, S.I. Khan, Advances in surface passivation of c-Si solar cells, Mater. Renew. Sustain. Energy 1 (2012) pp.1-11.
DOI: 10.1007/s40243-012-0001-y
Google Scholar
[3]
K. Ryu, A. Upadhyaya, Y.W. Ok, H. Xu, L. Metin and A. Rohatgi, High Efficiency n-type Solar Cells with Screen-printed Boron Emitters and Ion-implanted Back Surface Field, 38th IEEE Photovoltaic Specialists Conference (2012) 002247-002249.
DOI: 10.1109/pvsc.2012.6318044
Google Scholar
[4]
S. Abermann, "Non-vacuum processed next generation thin film photovoltaics: Towards marketable efficiency and production of CZTS based solar cells, Solar energy 94 (2013) pp.37-70.
DOI: 10.1016/j.solener.2013.04.017
Google Scholar
[5]
T.Y. Kwon, D.H. Yang, M.K. Ju, W.W. Jung, S.Y. Kim, Y.W. Lee, D.Y. Dong, J. Yi, Solar Energy Mater. Solar cells 95 (2011) pp.14-17.
Google Scholar
[6]
J.S. Kim, K.W. Moon, K.S. Shin, M.I. Jung, C.J. Choi, Investigation of the Current-Voltage Characteristics of N+/P Junction Silicon Solar Cell Emitters formed by Phosphorus diffusion paste on p-Si substrate, 37th IEEE Photovoltaic Specialists Conference (2011).
DOI: 10.1109/pvsc.2011.6186384
Google Scholar
[7]
C.J. Choi, M.G. Jang, Y.Y. Kim, M.S. Jun, T.Y. Kim, Electrical and structural properties of high-k Er-silicate gate dielectric formed by interfacial reaction between Er and SiO2 films, Appl. Phys. Lett. 91 (2007) 012903-1-012903-3.
DOI: 10.1063/1.2753720
Google Scholar
[8]
D.B. Kao, J.P. McVittie, W.D. Nix, K.C. Saraswat, Two-Dimensional Thermal Oxidation of Silicon-II. Modeling Stress Effects in Wet Oxides, IEEE Trans. Electron Devices 35 (1988) pp.25-37.
DOI: 10.1109/16.2412
Google Scholar
[9]
H. Umimoto, S. Odanaka, I. Nakao, Numerical Simulation of Stress-Dependent Oxide Growth at Convex and Concave-Corners of Trench Structures, IEEE Electron Device Lett. 10 (1989) 330-332.
DOI: 10.1109/55.29669
Google Scholar
[10]
D.B. Kao, J.P. McVittie, W.D. Nix, K. C. Saraswat, Two-Dimensional Thermal Oxidation of Silicon-I. Experiments, IEEE Trans. Electron Devices 34 (1987) pp.1008-1017.
DOI: 10.1109/t-ed.1987.23037
Google Scholar
[11]
K. Kobayashi, Application of BaF2-B2O3-GeO2-SiO2 glasses to metal-oxide-silicon field-effect transistors, Appl. Phys. A, 61 (1995) pp.377-380.
DOI: 10.1007/bf01540111
Google Scholar
[12]
S.M. Hu, Effect of process parameters on stress development in two‐dimensional oxidation, J. Appl. Phys. 64 (1988) pp.323-330.
Google Scholar
[13]
J.S. Kim, M.W. Seo, K.S. Ahn, C.J. Choi, Reflow of phosphorous silicate glass layer formed on textured Si surface in crystalline Si solar cells, J. Nanosci. Nanotechnol. 12 (2012) pp.5700-5703.
DOI: 10.1166/jnn.2012.6403
Google Scholar
[14]
C.J. Choi, T.Y. Seong, Transmission Electron Microscopy Study of Two‐Dimensional Dopant Profiling in Metal‐Oxide‐Semiconductor Field Effect Transistor Test Structures and Devices J. Electrochem. Soc., 147 (2000) (4) pp.1525-1529.
DOI: 10.1149/1.1393388
Google Scholar
[15]
D.R. Turner, On the Mechanism of Chemically Etching Germanium and Silicon, J. Electrochem. Soc., 107 (1960) pp.810-816.
DOI: 10.1149/1.2427519
Google Scholar
[16]
D. M. Maher and B. Zhang, Characterization of structure/dopant behavior by electron microscopy, J. Vac. Sci. Technol. B 12 (1994) pp.347-352.
Google Scholar
[17]
S.S. Neogi, D. Venables, Z. Ma, D.M. Maher, M. Taylor, and S. Corcoran, Mapping two-dimensional arsenic distributions in silicon using dopant-selective chemical etching technique, J. Appl. Phys. 82 (1997) pp.5811-5815.
DOI: 10.1063/1.366449
Google Scholar
[18]
S. M. Hu, P. Fahey, and R. W. Dutton, On models of phosphorus diffusion in silicon, J. Appl. Phys. 54 (1983) pp.6912-6922.
DOI: 10.1063/1.331998
Google Scholar
[19]
A. Armigliato, M. Servidori, S. Solmi, and I. Vecchi, Growth of stacking-faults and dislocations induced in silicon by phosphorus predeposition, J. Appl. Phys. 48, (1977) pp.1806-1812.
DOI: 10.1063/1.323931
Google Scholar
[20]
P. Fahey , R.W. Dutton, and S.M. Hu, Supersaturation of self-interstitials and undersaturation of vacancies during phosphorus diffusion in silicon, Appl. Phys. Lett. 44 (1984) pp.777-779.
DOI: 10.1063/1.94915
Google Scholar
[21]
Young-Woo Ok, Ajeet Rohatgi, Yeon-Ho Kil, Sung-Eun Park, Dong-Hwan Kim, Joon-Sung Lee, and Chel-Jong Choi, Abnormal Dopant Distribution in POCl3-Diffused N+ Emitter of Textured Silicon Solar Cells, IEEE Electron Device Lett. 32 (2011) pp.351-353.
DOI: 10.1109/led.2010.2098840
Google Scholar
[22]
J.S. Park, D.K. Sohn, J.U. Bae, C.H. Han, and J.W. Park, The effect of Co incorporation on electrical characteristics of n +/p shallow junction formed by dopant implantation into CoSi2 and anneal, IEEE Trans. Electron. Dev. 47 (2000) pp.994-998.
DOI: 10.1109/16.841231
Google Scholar
[23]
K.J. Hwang, J.H. Oh, N.K. Sung, D.Y. Ryu, S.H. Sa, K.J. Park, J. K. Lee, and J. G. Lee, Characterization and improvement of reverse leakage current of shallow silicided junction for sub-100 nm CMOS technology utilizing N2 PAI.
Google Scholar
[24]
H.D. Lee, S.G. Lee, S.H. Lee, Y.J. Lee, and J.M. Hwang, Characterization of corner-induced leakage current of a shallow silicided n+/p junction for quarter-micron MOSFETs, Jpn. J. Appl. Phys. 37 (1998) pp.1179-1183.
DOI: 10.1143/jjap.37.1179
Google Scholar
[25]
H.D. Lee, Characterization of shallow silicided junctions for sub-quarter micron ULSI technology-Extraction of silicidation induced Schottky contact area, IEEETrans. Electron Devices 47 (2000) pp.762-767.
DOI: 10.1109/16.830991
Google Scholar
[26]
V. Janardhanam, Y.K. Park, H.J. Yun, K.S. Ahn, and C.J. Choi, Conduction mechanism of Se Schottky contact to n-type Ge, Electron. Dev. Lett. 33 (2012) pp.949-951.
DOI: 10.1109/led.2012.2196750
Google Scholar