Feedstock Characterization of Elemental Nickel and Titanium Powders Mixture for Metal Injection Moulding Process

Article Preview

Abstract:

The success of metal injection moulding (MIM) process is significantly influenced by the homogeneity level of the powder-binder mixture (feedstock). This paper highlights some initial characterization of the feedstock containing elemental Ni and Ti powders mixture, (50.8 at.% Ni/ 49.2 at.% Ti) mixed with Palm stearin-based binder system. The feedstock was prepared using an internal mixer, HAAKE Rheomix at a temperature of 160°C for 2 hours. The feedstock was then characterized by Differential Scanning Calorimetry (DSC), Thermogravimetric (TGA), Scanning Electron Microscopy (SEM) and Capillary Rheometer. All the results obtained were analyzed and discussed for further injection moulding process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

78-82

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Petrini and F. Migliavacca, Biomedical Applications of Shape Memory Alloys, Journal of Metallurgy, vol. 2011, no. Figure 1, p.1–15, (2011).

DOI: 10.1155/2011/501483

Google Scholar

[2] G. Chen, P. Cao, and N. Edmonds, Porous NiTi alloys produced by press-and-sinter from Ni/Ti and Ni/TiH2 mixtures, Materials Science and Engineering: A, vol. 582, p.117–125, Oct. (2013).

DOI: 10.1016/j.msea.2013.05.082

Google Scholar

[3] S. Wisutmethangoon, N. Denmud, and L. Sikong, Characteristics and compressive properties of porous NiTi alloy synthesized by SHS technique, Materials Science and Engineering: A, vol. 515, no. 1–2, p.93–97, Jul. (2009).

DOI: 10.1016/j.msea.2009.02.055

Google Scholar

[4] M. Bram, a. Ahmad-Khanlou, a. Heckmann, B. Fuchs, H. P. Buchkremer, and D. Stöver, Powder metallurgical fabrication processes for NiTi shape memory alloy parts, Materials Science and Engineering: A, vol. 337, no. 1–2, p.254–263, Nov. (2002).

DOI: 10.1016/s0921-5093(02)00028-x

Google Scholar

[5] M. H. Ismail, R. Goodall, H. a. Davies, and I. Todd, Formation of microporous NiTi by transient liquid phase sintering of elemental powders, Materials Science and Engineering: C, vol. 32, no. 6, p.1480–1485, Aug. (2012).

DOI: 10.1016/j.msec.2012.04.028

Google Scholar

[6] N. H. M. Nor, M. H. Ismail, N. A. A. Kasim, N. Muhamad, and M. A. Taib, Characterization and Rheological Studies on Ready-Made Feedstock of Stainless Steel 316L in Metal Injection Molding ( MIM ) Process, Applied Mechanics and Materials, vol. 466, p.709–714, (2014).

DOI: 10.4028/www.scientific.net/amm.465-466.709

Google Scholar

[7] I. Subuki, Injection Moulding of 316L Stainless Steel Powder Using Palm Stearin Based Binder System, Universiti Teknologi Mara, (2010).

Google Scholar

[8] A. German, R. M., Bose, Injection Moulding of Metal and Ceramics. (1997).

Google Scholar

[1] G. Chen, P. Cao, and N. Edmonds, Porous NiTi alloys produced by press-and-sinter from Ni/Ti and Ni/TiH2 mixtures, Materials Science and Engineering: A, vol. 582, p.117–125, Oct. (2013).

DOI: 10.1016/j.msea.2013.05.082

Google Scholar

[2] D. Cluff and S. F. Corbin, The influence of Ni powder size, compact composition and sintering profile on the shape memory transformation and tensile behaviour of NiTi, Intermetallics, vol. 18, no. 8, p.1480–1490, Aug. (2010).

DOI: 10.1016/j.intermet.2010.03.043

Google Scholar

[3] S. Wisutmethangoon, N. Denmud, and L. Sikong, Characteristics and compressive properties of porous NiTi alloy synthesized by SHS technique, Materials Science and Engineering: A, vol. 515, no. 1–2, p.93–97, Jul. (2009).

DOI: 10.1016/j.msea.2009.02.055

Google Scholar

[4] B. Y. Tay, C. W. Goh, M. S. Yong, A. M. Soutar, Q. Li, M. K. Ho, M. H. Myint, Y. W. Gu, and C. S. Lim, Self-propagating high-temperature synthesis of porous NiTi, SIMTech technical reports, vol. 7, no. 1, p.21–25, (2006).

DOI: 10.1016/j.jmatprotec.2007.09.037

Google Scholar

[5] J. Mentz, J. Frenzel, M. F. -X. Wagner, K. Neuking, G. Eggeler, H. P. Buchkremer, and D. Stöver, Powder metallurgical processing of NiTi shape memory alloys with elevated transformation temperatures, Materials Science and Engineering: A, vol. 491, no. 1–2, p.270–278, Sep. (2008).

DOI: 10.1016/j.msea.2008.01.084

Google Scholar

[6] H. Guoxin, Z. Lixiang, F. Yunliang, and L. Yanhong, Fabrication of high porous NiTi shape memory alloy by metal injection molding, Journal of Materials Processing Technology, vol. 206, no. 1–3, p.395–399, Sep. (2008).

DOI: 10.1016/j.jmatprotec.2007.12.044

Google Scholar

[7] A. German, R. M., Bose, Injection Moulding of Metal and Ceramics. (1997).

Google Scholar

[8] M. H. . Ibrahim, N. Muhamad, and A. . Sulong, Rheological Investigation of Water Atomised Stainless Steel, International Journal of Mechanical and Materials Engineering, vol. 4, no. 1, p.1–8, (2009).

Google Scholar

[9] K.R. Jamaludin, N. Muhamad, S. Y. M. Amin, M. N. A. Rahman, and Murtadhahadi, Rheological Behavior of SS316L Gas atomized Powder in Bimodal Particle Size Distribution in A composite Binder System, International Journal of Mechanical and Materials Engineering, vol. 3, p.108–114, (2008).

Google Scholar