Influence of Prior Austenite Grain Size on the Dispersion of Fatigue Crack Propagation Thresholds in Weld Metal

Article Preview

Abstract:

Fatigue crack propagation threshold is an important property for the structures with long life, such as nuclear turbine welded rotor. The fatigue crack propagation thresholds of multi-layer, multi-pass SAW weld metal of nuclear turbine rotor simulate are tested. But a big dispersion is found among test values, even at the same stress ratio . The dispersion of critical points between stable propagation zone and near-threshold zone is confirmed as an important reason. After the observation of microstructures around the critical points by backward inference method in different specimens, a good correspondence between the sizes of prior austenite grains and the maximum sizes of monotonic plastic zone at the crack tip is established. The inhomogeneous microstructures in SAW weld metal are the basic cause to dispersion of fatigue crack propagation thresholds at the same stress ratio.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

111-120

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Nakano, K. Tanaka, T. Nakazawa, et al.: Technical Review Vol. 42(3) (2005), pp.1-5.

Google Scholar

[2] J. Y. Shi, Z. C. Deng, Y. Wang, et al.: Chinese Journal of Power Engineering Vol. 33(1) (2013), pp.17-23.

Google Scholar

[3] Z. Masur: Welding International Vol. 16(11) (2002), pp.872-878.

Google Scholar

[4] M. L. Zhu: East China University of Science and Technology (2011).

Google Scholar

[5] A.J. McEvily, R.O. Ritchie: Fatigue & Fracture of Engineering Materials & Structures Vol. 21(1998), pp.847-855.

Google Scholar

[6] R. A. Schmidt, P. C. Paris: ASTM special technical publication Vol. (536) (1973), pp.79-94.

Google Scholar

[7] R.O. Ritchie: International Journal of Fracture Vol. 100 (1) (1999), pp.55-83.

Google Scholar

[8] C. Vallellano, A. Navarro, J. Dominguez: International Journal of Fatigue Vol. 46 (2013), pp.27-34.

Google Scholar

[9] M. Shen, H. Y. Yang: Journal of Experimental Mechanics Vol. 14(3) (1999), pp.302-308.

Google Scholar

[10] D. L. Davidson, J. Lankford: International Materials Reviews Vol. 37(1) (1992), pp.45-76.

Google Scholar

[11] D. L. Chen, B. Weiss, R. Stickler: International Journal of Fatigue Vol. 16(7) (1994), pp.485-491.

Google Scholar

[12] J. D. Wu, Z. P. Cai, J. L. Pan, et al. Thermal Turbine Vol. (2) (2013), pp.84-89.

Google Scholar

[13] T. Z. Zhang, W. L. Guo, F. Xu: ActaAeronauticaEtAstronauticaSinica Vol. 22(1) (2011), pp.24-29.

Google Scholar

[14] L. Lawson, E. Y. Chen, M. Meshii: International Journal of Fatigue Vol. 21(1999), p. S15-S34.

Google Scholar