A Class of Nonlinear Singular Difference Inequality in Engineering

Article Preview

Abstract:

In this paper, we discuss a class of new nonlinear weakly singular difference inequality. Using change of variable, discrete Jensen inequality, amplification method, the mean-value theorem for integrals and Gamma function, explicit bounds for the unknown functions in the inequality is given clearly. The derived results can be applied in the study of fractional difference equations in Engineering.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

824-827

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. H. Gronwall: Ann Math. Vol. 20(1919), p.292.

Google Scholar

[2] R. Bellman: Vol. 10(1943) , p.643.

Google Scholar

[3] S. Sugiyama: Bull. Sci. Engr. Research Lab. Waseda Univ. vol. 45(1969), p.140.

Google Scholar

[4] D. Henry: Geometric Theory of Semilinear Parabolic Equations(Springer-Verlag, Berlin/ Heidel- berg /New York, 1981).

Google Scholar

[5] M. Medved: J. Math. Anal. Appl. Vol. 214(1997) , p.349.

Google Scholar

[6] I. Podlubny, Fractional Differential Equations, Academic Press, New York, (1999).

Google Scholar

[7] M. Medved: J. Inequal. Appl. Vol. 5(2000), p.287.

Google Scholar

[8] Q.H. Ma, E. H. Yang: Acta Math Appl Sin. Vol. 25(2002) , p.505.

Google Scholar

[9] M. Medvevd: Tatra. Mt. Math. Publ. Vol. 38(2007), p.163.

Google Scholar

[10] H. Ye, J. Gao, Y. Ding: J. Math. Anal. Appl. Vol. 328(2007), p.1075.

Google Scholar

[11] E. H. Yang, Q. H. Ma and M. C. Tan: J. Jinan Univ. vol. 28(1) (2007), p.1.

Google Scholar

[12] M. Kuczma: An introduction to the theory of functional equations and inequalities: Cauchy's equation and Jensen's inequality( University of Katowice, Katowice, 1985).

Google Scholar

[13] K. Zheng, H. Wang and C. Guo: Adv. Differ. Equ. vol. 2013 (2013)(239), p.1.

Google Scholar