[1]
Lin PL, Kiureghian AD, Optimization algorithms for structural reliability[J]. Structural Safety, 1991. 120(9); 161-177.
DOI: 10.1016/0167-4730(91)90041-7
Google Scholar
[2]
Qiu ZP, Mueller PC, Frommer A. The new non-probabilistic criterion of failure for dynamical systems based on convex models. Math Comput Model2004; 40: 201-15.
Google Scholar
[3]
D. Moens, D. Vandepitte, Recent advances in non-probabilistic approaches for non-deterministic dynamic finite element analysis, Arch. Comput. Meth. Engrg. 13 (2006) 389-464.
DOI: 10.1007/bf02736398
Google Scholar
[4]
B. Moller, M. Beer, Engineering computation under uncertainty-capabilities of non-traditional models, Comput. Struct. 86 (2007) 1024-1041.
DOI: 10.1016/j.compstruc.2007.05.041
Google Scholar
[5]
Z. Pawlak. Rough sets. rough function and rough calculus. In: Rough-Fuzzy Hybridization: A New Trend in Decision-Making S.K. Pal.A. Skowron. eds. ). singapore: SPringer-Verlag. (1999): 99-109.
DOI: 10.1007/978-94-011-3534-4_8
Google Scholar
[6]
J. Ruokolainen, Constructive Nonstandard Analysis Without Actual Infinity. Porthania: Helsinki, (2004).
Google Scholar
[7]
J. Mycielski, Analysis without actual infinity. Journal of Symbolic Logic, 46(1981): 625-33.
DOI: 10.2307/2273760
Google Scholar
[8]
R. Chuaqui, P. suppes. Free-variable axiomatic foundations of infinitesimal analysis: a Fragment with finitary consistency proof. Joumal of Symbolic Logic, 60(l995): 122-159.
DOI: 10.2307/2275512
Google Scholar
[9]
B. KuiPers. Qualitative simulation. Artificial Intelligence, (29)1986: 289-338.
Google Scholar
[10]
H. Werthner. Qualitative Reasoning-Modeling and the Generation of Behavior. Singapore: SPringer-Verlag, (1994).
Google Scholar
[11]
D.G. Li, X.E. Chen. Improvement of definitions of one-element rough funetion and binary rough function and investigation of their mathematical analysis properties. Journal of Shanxi University, 23(4)(2000): 318-321. (inChinese).
Google Scholar