[1]
OC. Celik and BR. Ellingwood: Seismic fragilities for non-ductile reinforced concrete frames – Role of aleatoric and epistemic uncertainties. Structural Safety, Vol. 32 ( 2010), p.1–12.
DOI: 10.1016/j.strusafe.2009.04.003
Google Scholar
[2]
BA. Bradley and DS. Lee: Accuracy of approximate methods of uncertainty propagation in seismic loss estimation. Structural Safety, Vol. 32 (2010), pp.13-24.
DOI: 10.1016/j.strusafe.2009.04.001
Google Scholar
[3]
D. Asprone, F. Jalayer, A. Prota and G. Manfredi: Proposal of a probabilistic model for multi- hazard risk assessment of structures in seismic zones subjected to blast for the limit state of collapse. Structural Safety , Vol. 32 ( 2010), p.25–34.
DOI: 10.1016/j.strusafe.2009.04.002
Google Scholar
[4]
AB. Liel, CB. Haselton, GG. Deierlein and JW. Baker: Incorporating modeling uncertainties in the assessment of seismic collapse risk of buildings. Structural Safety, Vol. 31 ( 2009), p.197–211.
DOI: 10.1016/j.strusafe.2008.06.002
Google Scholar
[5]
O. Möller, RO. Foschi, LM. Quiroz and M. Rubinstein: Structural optimization for performance- based design in earthquake engineering: Applications of neural networks. Structural Safety 2009,Vol. 31 ( 2009), p.490–499.
DOI: 10.1016/j.strusafe.2009.06.007
Google Scholar
[6]
V. Piluso, G. Rizzano and I. Tolone I: Seismic reliability assessment of a two-story steel-concrete composite frame designed according to Eurocode 8. Structural Safety, Vol. 31 (2009), pp.383-395.
DOI: 10.1016/j.strusafe.2009.01.001
Google Scholar
[7]
RJ. Williams, P. Gardoni and JM. Bracci: Decision analysis for seismic retrofit of structures. Structural Safety, Vol. 31 (2009), pp.188-196.
DOI: 10.1016/j.strusafe.2008.06.017
Google Scholar
[8]
L. Berto, R. Vitaliani, A. Saetta and P. Simioni: Seismic assessment of existing RC structures affected by degradation phenomena. Structural Safety, Vol. 31 (2009), pp.284-297.
DOI: 10.1016/j.strusafe.2008.09.006
Google Scholar
[9]
J. Song and WH. Kang: System reliability and sensitivity under statistical dependence by matrix-based system reliability method. Structural Safety, Vol. 31 (2009), pp.148-156.
DOI: 10.1016/j.strusafe.2008.06.012
Google Scholar
[10]
A. Der Kiureghian and RL. Taylor: Numerical methods in structural reliability. In G. Augusti, A. Borri and G. Vannucchi, editors: Proceedings of the Fourth International Conference on Applications of Statistics and Probability in Civil Engineering. ICASP4, Bologna: Pitagora Ed.ITALIE, (1983),pp.36-225.
Google Scholar
[11]
PL. Liu and A. Der Kiureghian: Optimization algorithms for structural reliability. Structural Safety, Vol. 9(3) (1991), pp.78-161.
DOI: 10.1016/0167-4730(91)90041-7
Google Scholar
[12]
M. Gutierrez, J. Carmeliet and R. de Borst: Finite element reliability methods using diana. In: Kusters GMA, Hendriks MAN, editors. Diana Computational Mechanics, Dodrecht: Kluwer Academic Publishers, (1994), pp.64-255.
DOI: 10.1007/978-94-011-1046-4_24
Google Scholar
[13]
Y. Zhang and A. Der Kiureghian, in: Finite Element Reliability Methods for Inelastic Structures. Report No. UCB/SEMM-97/05, Berkeley: University of California, (1997).
Google Scholar
[14]
A. Der Kiureghian and Y. Zhang: Space-variant finite element reliability analysis. Computer methods in applied mechanics and engineering, Vol. 168 (1999), pp.173-183.
DOI: 10.1016/s0045-7825(98)00139-x
Google Scholar
[15]
B. Sudret and A. Der Kiureghian, in: Stochastic finite element methods and reliability. a State-of- the-Art report, Report No. UCB/SEMM-2000/08, Berkeley: University of California, (2000).
Google Scholar
[16]
K. Imai and DM. Frangopol: Geometrically nonlinear finite element reliability analysis of structural systems. i: theory, ii: applications. Computers and Structures. Vol. 77(6) (2000), pp.677-709.
DOI: 10.1016/s0045-7949(00)00011-0
Google Scholar
[17]
A. Haldar and S. Mahadevan, in: Reliability assessment using stochastic finite element analysis. New York: John Wiley and Sons, (2000).
Google Scholar
[18]
C. Frier and J. Sorensen: Stochastic finite element analysis of non-linear structures modelled by plasticity theory. In: A. Der Kiureghian, S. Madanat and J. Pestana. editors. Proceedings of the Ninth International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP9, Rotterdam: Millpress. (2003), pp.90-283.
Google Scholar
[19]
T. Haukaas and A. Der Kiureghian, in: Finite Element Reliability and Sensitivity Methods for Performance-Based Earthquake Engineering. PEER Report 2003/14, Pacific Earthquake Engineering Research Center, University of California at Berkeley, (2004).
Google Scholar
[20]
Règlement de construction parasismique RPS 2000. Ministère de l'ATUHE, Secrétariat d'État à l'Habitat, Kingdom of Morocco, (2001).
Google Scholar
[21]
Federal Emergency Management Agency, FEMA-356. Prestandard and Commentary for the Seismic Rehabilitation of Buildings, ASCE, Federal Emergency Management Agency, Washington, DC, (2000).
DOI: 10.1007/springerreference_225387
Google Scholar
[22]
A. Der Kiureghian and M. DeStefano, in:"Efficient algorithm for second-order reliability." JOURNAL of Engineering Mechanics, ASCE. Vol. 117(12) (1991), pp.2923-2904.
DOI: 10.1061/(asce)0733-9399(1991)117:12(2904)
Google Scholar
[23]
O. Ditlevsen and H.O. Madsen, in: Structural Reliability Methods. Wiley, Chichester, New York: NY,(1996).
Google Scholar
[24]
R. E. Melchers, in: Structural Reliability Analysis and Prediction. John Wiley and Sons, Chichester: 2nd edition, (1999).
Google Scholar
[25]
T.V. Santosh et al: Optimum step length selection rule in modified HL-RF method for structural reliability. Pressure Vessels and Piping. Vol. 83 (2006), pp.742-748.
DOI: 10.1016/j.ijpvp.2006.07.004
Google Scholar