[1]
Daniel WJT. A study of the stability of subcycling algorithms in structural dynamics [J]. Computer Methods in Applied Mechanics and Engineering[ISSN 0045-7825], 1998, 156(1): 1-13.
DOI: 10.1016/s0045-7825(97)00140-0
Google Scholar
[2]
Gravouil A, and Combescure A. Multi-time-step Explicit-Implicit Method for Non-linear Structural Dynamics [J]. International Journal for Numerical Methods in Engineering[ISSN 1097-0207], 2001, 50(1): 199-225.
DOI: 10.1002/1097-0207(20010110)50:1<199::aid-nme132>3.0.co;2-a
Google Scholar
[3]
Arnold M, Carrarini A, Heckmann A, Hippmann, G. Simulation techniques for multidisciplinary problems in vehicle system dynamics [J]. Vehicle System Dynamics[ISSN 0042-3114], 2003, 40(1): 17-36.
DOI: 10.1080/00423114.2011.582953
Google Scholar
[4]
Baumgarte J. Stabilization of constraints and integrals of motion in dynamical systems [J]. Computer Methods in Applied Mechanics and Engineering[ISSN 0045-7825], 1972, 1: 1-16.
DOI: 10.1016/0045-7825(72)90018-7
Google Scholar
[5]
Blajer W. Augmented Lagrangian formulation: geometrical interpretation and application to systems with singularities and redundancy [J]. Multibody System Dynamics[ISSN 1384-5640], 2002, 8(2): 141-159.
DOI: 10.1023/a:1019581227898
Google Scholar
[6]
Bayo E, Ledesma R. Augmented Lagrangian and mass-orthogonal projection methods for constrained multibody dynamics [J]. Journal of Nonlinear Dynamics[ISSN 0924-090x], 1996, 9(1): 113-130.
DOI: 10.1007/bf01833296
Google Scholar
[7]
Farhat C, Crivelli L, Gèradin.M. Implicit time integration of a class of constrained hybrid formulations - Part I: Spectral stability theory [J]. Computer Methods in Applied Mechanics and Engineering[ISSN 0045-7825], 1995, 125(1): 71-107.
DOI: 10.1016/0045-7825(95)00783-w
Google Scholar
[8]
Hughes TJR. The Finite Element Method, Linear Static and Dynamic Finite Element Analysis [M]. Englewood Cliffs: Prentice-Hall, 1998: 490-569.
Google Scholar
[9]
Bonelli A, Bursi O S, He L, Pegon P, Magonette G. Convergence analysis of a parallel interfield method for heterogeneous simulations with dynamic substructuring [J]. International Journal for Numerical Methods in Engineering[ISSN 1097-0207], 2008, 75(7): 800—825.
DOI: 10.1002/nme.2285
Google Scholar
[10]
Prakash A. A. Multi-time-step Domain Decomposition and Coupling Methods for Non-Linear Structural Dynamics[D]. Ph. D. dissertation, Urbana-Champaign: University of Illinois, (2007).
Google Scholar