[1]
M F Shlesinger, J Klafter, Y M Wong. Random walks with infinite spatial and temporal moments [J]. Journal of Statistical Physics, 1982, 27(3): 499-512.
DOI: 10.1007/bf01011089
Google Scholar
[2]
M Magdziarz, R Metzler, W Szczotka, et al. Correlated continuous-time random walks—scaling limits and Langevin picture[J]. Journal of Statistical Mechanics: Theory and Experiment, 2012, 2012(04): P04010.
DOI: 10.1088/1742-5468/2012/04/p04010
Google Scholar
[3]
G M Viswanathan, V Afanasyev, S V Buldyrev, E J Murphy, P A Prince, H E Stanley, Lévy flight search patterns of wandering albatrosses [J]. Nature, 1996, 381: 413-415.
DOI: 10.1038/381413a0
Google Scholar
[4]
G M Viswanathan, S V Buldyrev, S Havlin, M G E da Luz , E P Raposo, H E Stanley, Optimizing the success of random searches [J]. Nature, 1999, 401: 911-914.
DOI: 10.1038/44831
Google Scholar
[5]
L C E Struik. Physical aging in amorphous polymers and other materials [M]. Amsterdam: Elsevier, (1978).
Google Scholar
[6]
J Klafter, I M Sokolov. First steps in random walks: from tools to applications [M]. OUP Oxford, 2011, P114.
DOI: 10.1093/acprof:oso/9780199234868.003.0003
Google Scholar
[7]
J Klafter, I M Sokolov. First steps in random walks: from tools to applications [M]. OUP Oxford, 2011, P58.
DOI: 10.1093/acprof:oso/9780199234868.003.0003
Google Scholar
[8]
A Lubelski, I M Sokolov, J Klafter. Nonergodicity mimics inhomogeneity in single particle tracking [J]. Physical review letters, 2008, 100(25): 250602.
DOI: 10.1103/physrevlett.100.250602
Google Scholar
[9]
I M Sokolov, J Klafter, A Blumen. Fractional kinetics [J]. Physics Today, 2002, 55(11): 48.
DOI: 10.1063/1.1535007
Google Scholar