Properties and Moving Time Average for Lévy Walks with Power-Law Waiting-Time Distributions

Article Preview

Abstract:

Lévy walks are a natural model for the description of sub-ballistic, superdiffusive motion. The waiting times and jump lengths of Lévy walks are coupled in the form . The-coupling introduces a time cost for each jump in the form of the generalized velocity , such that long jumps get penalized by a higher time cost. In this paper, we firstly investigate the properties of Lévy walks with power-law waiting-time distributions; then discuss its moving time average.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3079-3082

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M F Shlesinger, J Klafter, Y M Wong. Random walks with infinite spatial and temporal moments [J]. Journal of Statistical Physics, 1982, 27(3): 499-512.

DOI: 10.1007/bf01011089

Google Scholar

[2] M Magdziarz, R Metzler, W Szczotka, et al. Correlated continuous-time random walks—scaling limits and Langevin picture[J]. Journal of Statistical Mechanics: Theory and Experiment, 2012, 2012(04): P04010.

DOI: 10.1088/1742-5468/2012/04/p04010

Google Scholar

[3] G M Viswanathan, V Afanasyev, S V Buldyrev, E J Murphy, P A Prince, H E Stanley, Lévy flight search patterns of wandering albatrosses [J]. Nature, 1996, 381: 413-415.

DOI: 10.1038/381413a0

Google Scholar

[4] G M Viswanathan, S V Buldyrev, S Havlin, M G E da Luz , E P Raposo, H E Stanley, Optimizing the success of random searches [J]. Nature, 1999, 401: 911-914.

DOI: 10.1038/44831

Google Scholar

[5] L C E Struik. Physical aging in amorphous polymers and other materials [M]. Amsterdam: Elsevier, (1978).

Google Scholar

[6] J Klafter, I M Sokolov. First steps in random walks: from tools to applications [M]. OUP Oxford, 2011, P114.

DOI: 10.1093/acprof:oso/9780199234868.003.0003

Google Scholar

[7] J Klafter, I M Sokolov. First steps in random walks: from tools to applications [M]. OUP Oxford, 2011, P58.

DOI: 10.1093/acprof:oso/9780199234868.003.0003

Google Scholar

[8] A Lubelski, I M Sokolov, J Klafter. Nonergodicity mimics inhomogeneity in single particle tracking [J]. Physical review letters, 2008, 100(25): 250602.

DOI: 10.1103/physrevlett.100.250602

Google Scholar

[9] I M Sokolov, J Klafter, A Blumen. Fractional kinetics [J]. Physics Today, 2002, 55(11): 48.

DOI: 10.1063/1.1535007

Google Scholar