[1]
An, Z., Kutzbach, J.E., Prell, W.L., Porter, S.C. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature 411(2001)62–66.
DOI: 10.1038/35075035
Google Scholar
[2]
Brindley, G.W. Quantitative X-ray mineral analysis of clays: 1980, Pp. 411-438.
Google Scholar
[3]
Chen, L.H., Miu, X. The Application of scanning electron microscopy on geological. Science Publishing Press, Beijing, 1996. (in Chinese).
Google Scholar
[4]
Chen, Z.G. Genetic types of palygorskite clay. Geological Science and Technology Information 10, 3, 24–28(1991).
Google Scholar
[5]
Fang X. M., Li J. J., Zhu J. J., Chen H. L., Cao J. X Division and age dating of the Cenozoic strata of the Linxia Basin in Gansu, China. Chinese Science Bullentin, 42(1997)1457–1471 (in Chinese).
Google Scholar
[6]
Hong, H., Li, Z., Xue, H., Zhu, Y., Zhang, K., Xiang, S. Oligocene clay mineralogy of the Linxia basin: evidence of paleoclimatic evolution subsequent to the initial-stage uplift of the tibetan plateau. Clay Clay Miner. 55(2007)491–503.
DOI: 10.1346/ccmn.2007.0550504
Google Scholar
[7]
Li, J.J., Feng, Z.D., Tang, L.Y. Late quaternary monsoon patters on the loess plateau of China. Earth Surface Processes and Landforms. 13(1988)125–135.
DOI: 10.1002/esp.3290130204
Google Scholar
[8]
Médard, T. Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin. Earth Sci. Rev. 49 , 14, 201–221. (2000).
DOI: 10.1016/s0012-8252(99)00054-9
Google Scholar
[9]
Perederij, V.I. Clay mineral composition and palaeoclimatic interpretation of the Pleistocene deposits of Ukraine [J]. Quaternary International 76, 113-121. (2001).
DOI: 10.1016/s1040-6182(00)00095-1
Google Scholar
[10]
Robert C., Kennett J.P. Antarctic subtropical humid episode at the Paleocene-Eocene boundary: Clay-mineral evidence. Geology 22, 211–214(1994).
DOI: 10.1130/0091-7613(1994)022<0211:asheat>2.3.co;2
Google Scholar
[11]
Shi, Y.F., Li, J.J., Li, B.Y. Late Cenozoic Uplift and Environmental Change of Qinghai-Tibet Plateau. Guangzhou: Guangdong Science & Technology Press, 1998, p.463. (in Chinese).
Google Scholar
[12]
Singer, A. The paleoclimatic interpretation of clay minerals in soil and weathering-a review. Earth Sci. Rev. 21: 251-293(1984).
DOI: 10.1016/0012-8252(84)90055-2
Google Scholar
[13]
Tateo, F., Sabbadini R., Morandi N. Palygorskite and sepiolite occurrence in Pliocene lake deposits along the River Nile: evidence of an arid climate. J. African Earth Sci. 31 , 324, 633–645. (2000).
DOI: 10.1016/s0899-5362(00)80011-1
Google Scholar
[14]
Verrecchia, E.P., LeCoustumer, M.N. Occurrence and genesis of palygorskite and associated clay minerals in a Pleistocene calcrete complex, SDE Boqer, Negev desert, Israel. Clay Miner. 31, 183–202. (1996).
DOI: 10.1180/claymin.1996.031.2.04
Google Scholar
[15]
Wang, H.Z., Li, J.F., Wang, Y.H., Shi, G.H. New Development in research of crystal-chemistry and genesis of palygorskite. Geological Science and Technology Information 12 , 4, 51–55. (1993).
Google Scholar
[16]
Xi, X.X., Mu, D.F., Fang, X.M., LI, J.J. Climatic change since the late Miocene in west China: evidence from anion chlorine in the Linxia red Basin. Acta Sedmentologica Sinica 16, 155–160. (1998).
Google Scholar
[17]
Zhang, P., Molnar, P., Downs, W.R. Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature 410(2001)891–897.
DOI: 10.1038/35073504
Google Scholar