Analysis Cell Deformation of Undersize Log of Northeast Larch

Article Preview

Abstract:

As the potential of using natural log is explored in the temporary structure, especially in template as the shores, it is important to gain further understanding of the microstructure and properties of cells such as undersize tree of Northeast larch that under macro buckling load. The research described in this paper focuses, for the first time, after the initial preparation by microtoming, on investigating the microstructure of log by analyzing of the ESEM images, and a model for deformation and failure mechanism of the cell had been proposed, then, the properties of cells were calculated through image software. Results show that the cells including early wood and late wood under without extra load are regularly arrayed, the deformation of the wall was induced by asymmetric out of plane twisting and splitting due to buckling of the logs, failure of the early wood cell is easily than late wood that following the large deformation occurs at plasticity, and two properties including late wood percentage and cell wall percentage has a direct proportion with the strength of log. The presented results indicate that it is improve to understand and analyze the failure process of cell when the log under concrete compression loading, and the reason that log as sustainable material is due to the unbroken cell clusters recover themselves as quickly as possible during at a certain enough time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1145-1154

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Joseph F. Miller and William M. Bulleit: J. Struct. Eng. Vol. 137(1) (2011), p.124.

Google Scholar

[2] S. W. J. Boatright and G. G. Garrett: J. Mater. Sci. Vol. 18(1983), p.2181.

Google Scholar

[3] A. Bentur, S and Mindess: J. Mater. Sci. Vol. 21(1986), p.559.

Google Scholar

[4] Z. Chen and B. Gabbitas: J. Mater. Sci. Vol. 40(2005), p. (1929).

Google Scholar

[5] Z. Chen and B. Gabbitas: J. Mater. Sci. Vol. 41(2006), p.3645.

Google Scholar

[6] H. F. Jang, A. G. Robertson and R. S. Seth: J. Mater. Sci. Vol. 27(1992), p.6391.

Google Scholar

[7] F. Thuvander and L. O. Jernkvist: J. Mater. Sci. Vol. 35(2000), p.6259.

Google Scholar

[8] F. Thuvander and M. Sjodahl: J. Mater. Sci. Vol. 35(2000), p.6267.

Google Scholar

[9] F. Thuvander and L. A. Berglund: J. Mater. Sci. Vol. 35(2000), p.6277.

Google Scholar

[10] K. M. Entwistle and N. J. Terrill: J. Mater. Sci. Vol. 35(2000), p.1675.

Google Scholar

[11] K. M. Entwistle, K. Kong, M. A. MacDonald, N. Navaranjan and S. J . Eichhorn: J. Mater. Sci. Vol. 42(2007), p.7263.

Google Scholar

[12] K. M. Entwistle and N. Navaremjan: J. Mater. Sci. Vol. 36(2001), p.3855.

Google Scholar

[13] J. Farber and H. C. Lichtenegger: J. Mater. Sci. Vol. 36(2001), p.5087.

Google Scholar

[14] A. Reiterer, H. Lichtenegger, P. Fratzl and S. E. Stanzl-Tschegg: J. Mater. Sci. Vol. 36(2001), p.4681.

DOI: 10.1023/a:1017906400924

Google Scholar

[15] A. Bergander and L. Salmen: J. Mater. Sci. Vol. 37(2002), p.151.

Google Scholar

[16] J. Fahlen and L. Salmen: J. Mater. Sci. Vol. 38(2003), p.191.

Google Scholar

[17] N. Navaranjan, R. J. Blaikie, A. N. Parbnn, J. D. Richardson and A. R. Pickson: J. Mater. Sci. Vol. 44(2008), p.4323.

Google Scholar

[18] J. L Katz, P. Spencer, Y. Wang, A. Mosra, O. Marangos and L. Friis: J. Mater. Sci. Vol. 43(2008), p.139.

Google Scholar

[19] R. Adusumalli, R. Raghavan, R. Ghisleni, T. Zimmermanm and J. Michler: Appl Phys A Mater Sci & Pro. Vol. 100(2010), p.447.

Google Scholar

[20] X Zhang, Qiuhong Zhao, Siqun Wang, R. Trejo, E. Lara-Curzio and G. Du: Composites: Part A. Vlo. 41(2010), p.632.

Google Scholar

[21] W. Gindl, H. S. Gupta, ,T. Schoberl, H. C. Lichtenegger and P. Fratzl: Appl Phys A Mater Sci & Pro. Vol. 79(2004), p. (2069).

Google Scholar

[22] J. Konnerth, N. Ginerlinger, J. Keckes and W. Gindl: J. Mater. Sci. Vol. 44(2009), p.4399.

Google Scholar

[23] Hai. Qing and L. Mishnaevsky: Computer Material Science. Vol. 46(2009), p.310.

Google Scholar

[24] Hai. Qing and L. Mishnaevsky: Mechanics of Materials. Vol. 43(2011), p.487.

Google Scholar

[25] E. I. S. Flores, E. A. de Souza Neto, C. Pearce: Computational Materials Science. Vol. 50(2011), p.1202.

Google Scholar

[26] G. Y. Jeong and D. P. Hindman: J. Mater. Sci. Vol. 44(2009), p.3824.

Google Scholar

[27] GB/T 1928-2009. General requirements for physical and mechanical tests of wood. Standards Press of China, (2009).

Google Scholar

[28] Xu Manqiong and Lu Zhenyou: Mechanics in Engineering, Vol. 3(2002), p.38.

Google Scholar