[1]
B. Carrasco, N. Cruz, J. Terrados, F.A. Corpas, L. Pérez, An evaluation of bottom ash from plant biomass as a replacement for cement in building blocks, Volume 118, 15 (2014), pp.272-280.
DOI: 10.1016/j.fuel.2013.10.077
Google Scholar
[2]
G. Görhan, O. Şimşek, Porous clay bricks manufactured with rice husks, Construction and Building Materials, Volume 40, (2013), pp.390-396.
DOI: 10.1016/j.conbuildmat.2012.09.110
Google Scholar
[3]
R.R. Gareev, Betonniy stroitelnii kamen, (2007).
Google Scholar
[4]
M. Sutcu, S. Akkurt, The use of recycled paper processing residues in making porous brick with reduced thermal conductivity, Ceramics International, Volume 35, (2009), pp.2625-2631.
DOI: 10.1016/j.ceramint.2009.02.027
Google Scholar
[5]
Ananev A. I., Abaryikov V. P., Begoulev S. A., Bulanyiy A. S. Vliyanie tehnologicheskih faktorov na teploprovodnost i vlazhnostnyiy rezhim kirpichnyih kladok naruzhnyih sten iz pustotelogo keramicheskogo kirpicha i kamnya [Influence of technology factors on heat conductivity and moist mode of bricklayings of external walls from a hollow ceramic brick and a stone] / Academia. Arhitektura i stroitelstvo. #5. 2009. S. 306-312. (rus).
Google Scholar
[6]
H. J. Yim, J. H. Kim, B. Y. Lee, H. -G. Kwak, Air voids size distribution determined by ultrasonic attenuation, Construction and Building Materials, Vol. 47, ( 2013), pp.502-510.
DOI: 10.1016/j.conbuildmat.2013.05.070
Google Scholar
[7]
B. Łaźniewska-Piekarczyk, The frost resistance versus air voids parameters of high performance self compacting concrete modified by non-air-entrained admixtures, Construction and Building Materials, Volume 48, (2013), pp.1209-1220.
DOI: 10.1016/j.conbuildmat.2013.07.080
Google Scholar
[8]
GOST 26254 Zdaniya i sooruzheniya. Metodyi opredeleniya soprotivleniya teploperedache ograzhdayuschih konstruktsiy[Construction materials and. Methods of determination of resistance to vapor permeabilitya]. (rus).
Google Scholar
[9]
Osipov G.L., Lopashev D.Z., Fedoseeva E.N. Akusticheskie izmereniya v stroitelstve [Acoustic measurements in construction] – M.: Stroyizdat, 1978. – s. 37-39. (rus).
Google Scholar
[10]
GOST 25898 Materialyi i izdeliya stroitelnyie. Metodyi opredeleniya soprotivleniya paropronitsaniyu. (rus).
Google Scholar
[11]
SNiP 23-02-2003 Teplovaya zaschita zdaniy [Thermal protection of buildings. ]. (rus).
Google Scholar
[12]
S. J. Baik, Y. Lee, K. S. Lim, K. -T. Kim, Thin film solar cells on honeycomb-structured substrates for photovoltaic building blocks, Renewable Energy, Volume 64, (2014), pp.98-104.
DOI: 10.1016/j.renene.2013.11.004
Google Scholar
[13]
J.J. del Coz Díaz, F.P. Álvarez-Rabanal, O. Gencel, P.J. García Nieto, M. Alonso-Martínez, A. Navarro-Manso, B. Prendes-Gero, Hygrothermal study of lightweight concrete hollow bricks: A new proposed experimental–numerical method, Energy and Buildings, Volume 70, (2014).
DOI: 10.1016/j.enbuild.2013.11.060
Google Scholar
[14]
S. Ivorra, J. García-Barba, M. Mateo, C. Pérez-Carramiñana, A. Maciá, Partial collapse of a ventilated stone façade: Diagnosis and analysis of the anchorage system, Engineering Failure Analysis, Volume 31, (2013), pp.290-301.
DOI: 10.1016/j.engfailanal.2013.01.045
Google Scholar
[15]
A Abdelbaki, Z Zrikem, F Haghighat, Identification of empirical transfer function coefficients for a hollow tile based on detailed models of coupled heat transfers, Building and Environment, Volume 36, Issue 2, 1 (2001), pp.139-148.
DOI: 10.1016/s0360-1323(99)00061-x
Google Scholar
[16]
K.C.K. Vijaykumar, P.S.S. Srinivasan, S. Dhandapani, A performance of hollow clay tile (HCT) laid reinforced cement concrete (RCC) roof for tropical summer climates, Energy and Buildings, Volume 39, Issue 8, (2007), pp.886-892.
DOI: 10.1016/j.enbuild.2006.05.009
Google Scholar
[17]
J.E. Beavers, R.M. Bennett and R.D. Flanagant, Research on infilled hollow clay tile walls, In Urban Disaster Mitigation: The Role of Engineering and Technology, edited by F.Y. Cheng and M. -S. Sheu, Pergamon, Oxford, (1995), pp.97-108.
DOI: 10.1016/b978-008041920-6/50013-0
Google Scholar
[18]
A. Mezquita, J. Boix, E. Monfort, G. Mallol, Energy saving in ceramic tile kilns: Cooling gas heat recovery, Applied Thermal Engineering, Volume 65, (2014), pp.102-110.
DOI: 10.1016/j.applthermaleng.2014.01.002
Google Scholar
[19]
U.V. Denisova , M.M. Kosuhin, E.C. Chernositova, Otsenka stabilьnosti kachestva kamney betonnyih stenovyih, Belgorodskiy gosudarstvennyiy tehnologicheskiy universitet im. V.G. Shuhova, (2010), pp.62-65.
Google Scholar
[20]
Izotov, Igor N., Kuznetsov, Nikolay P., Melkinov, Boris E., Mityukov, Arkadiy G., Musienko, Andrey Yu. New variants of the multisurface theory of plasticity. Comparison with the experimental data /Proceedings of SPIE - The International Society for Optical Engineering, 2000, 4064, pp.362-367.
DOI: 10.1117/12.375456
Google Scholar
[21]
Vatin N.I., Gorshkov A.S., Glumov A.V., Vliyanie fiziko-tehnicheskih I geometricheskih HARAKTERISTIK shtukaturnyih pokryitiy NA vlazhnostnyiy rezhim odnorodnyih sten iz gazobetonnyih blokov [Influence of physics and technology and geometrical characteristics of plaster coverings on the moist mode of uniform walls from gas-concrete blocks]. Inzhenerno-stroitelnyiy zhurnal. (2011).
Google Scholar
[22]
Parashenko N.A., Gorshkov A.C., Vatin N.I. Chastichno-rebristyie sborno-monolitnyie perekryitiya s yacheistobetonnyimi blokami [Partial and ridge combined and monolithic overlappings with yacheistobetonny blocks]. Inzhenerno-stroitelnyiy zhurnal. 2011. № 6. pp.50-55.
Google Scholar
[23]
Sprince A. A , Fischer G. B , Pakrastinsh L. A , Korjakins A.A. Crack propagation in concrete with silica particles. Advanced Materials Research, 842, (2014) pp.470-476.
DOI: 10.4028/www.scientific.net/amr.842.470
Google Scholar
[24]
Sprince A.A., Korjakins A.A., Pakrastinsh L.A. Time-dependent behavior of high performance fiber-reinforced concrete. Advanced Materials Research, 705, (2013) pp.75-80.
DOI: 10.4028/www.scientific.net/amr.705.75
Google Scholar