Influence of the Geometrical Values of Hollowness on the Physicotechnical Characteristics of the Concrete Vibropressed Wall Stones

Article Preview

Abstract:

In this research article advantages and disadvantages of hollow wall stones (SKTs) were considered, which now are widespread at frame and monolithic construction. Also results of laboratory researches are presented in the article. Definition technique of three physicomechanical characteristics is visually shown: thermal conductivity, sound eliminate, vapor permeability. Separate sambles and fragments of stone layings were made specially for carrying out experiment. Two types of wall stones were compared: with slot-hole and rectangular emptiness. Emptiness differ geometrical parameters therefore they substantially define physicomechanical characteristics.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] B. Carrasco, N. Cruz, J. Terrados, F.A. Corpas, L. Pérez, An evaluation of bottom ash from plant biomass as a replacement for cement in building blocks, Volume 118, 15 (2014), pp.272-280.

DOI: 10.1016/j.fuel.2013.10.077

Google Scholar

[2] G. Görhan, O. Şimşek, Porous clay bricks manufactured with rice husks, Construction and Building Materials, Volume 40, (2013), pp.390-396.

DOI: 10.1016/j.conbuildmat.2012.09.110

Google Scholar

[3] R.R. Gareev, Betonniy stroitelnii kamen, (2007).

Google Scholar

[4] M. Sutcu, S. Akkurt, The use of recycled paper processing residues in making porous brick with reduced thermal conductivity, Ceramics International, Volume 35, (2009), pp.2625-2631.

DOI: 10.1016/j.ceramint.2009.02.027

Google Scholar

[5] Ananev A. I., Abaryikov V. P., Begoulev S. A., Bulanyiy A. S. Vliyanie tehnologicheskih faktorov na teploprovodnost i vlazhnostnyiy rezhim kirpichnyih kladok naruzhnyih sten iz pustotelogo keramicheskogo kirpicha i kamnya [Influence of technology factors on heat conductivity and moist mode of bricklayings of external walls from a hollow ceramic brick and a stone] / Academia. Arhitektura i stroitelstvo. #5. 2009. S. 306-312. (rus).

Google Scholar

[6] H. J. Yim, J. H. Kim, B. Y. Lee, H. -G. Kwak, Air voids size distribution determined by ultrasonic attenuation, Construction and Building Materials, Vol. 47, ( 2013), pp.502-510.

DOI: 10.1016/j.conbuildmat.2013.05.070

Google Scholar

[7] B. Łaźniewska-Piekarczyk, The frost resistance versus air voids parameters of high performance self compacting concrete modified by non-air-entrained admixtures, Construction and Building Materials, Volume 48, (2013), pp.1209-1220.

DOI: 10.1016/j.conbuildmat.2013.07.080

Google Scholar

[8] GOST 26254 Zdaniya i sooruzheniya. Metodyi opredeleniya soprotivleniya teploperedache ograzhdayuschih konstruktsiy[Construction materials and. Methods of determination of resistance to vapor permeabilitya]. (rus).

Google Scholar

[9] Osipov G.L., Lopashev D.Z., Fedoseeva E.N. Akusticheskie izmereniya v stroitelstve [Acoustic measurements in construction] – M.: Stroyizdat, 1978. – s. 37-39. (rus).

Google Scholar

[10] GOST 25898 Materialyi i izdeliya stroitelnyie. Metodyi opredeleniya soprotivleniya paropronitsaniyu. (rus).

Google Scholar

[11] SNiP 23-02-2003 Teplovaya zaschita zdaniy [Thermal protection of buildings. ]. (rus).

Google Scholar

[12] S. J. Baik, Y. Lee, K. S. Lim, K. -T. Kim, Thin film solar cells on honeycomb-structured substrates for photovoltaic building blocks, Renewable Energy, Volume 64, (2014), pp.98-104.

DOI: 10.1016/j.renene.2013.11.004

Google Scholar

[13] J.J. del Coz Díaz, F.P. Álvarez-Rabanal, O. Gencel, P.J. García Nieto, M. Alonso-Martínez, A. Navarro-Manso, B. Prendes-Gero, Hygrothermal study of lightweight concrete hollow bricks: A new proposed experimental–numerical method, Energy and Buildings, Volume 70, (2014).

DOI: 10.1016/j.enbuild.2013.11.060

Google Scholar

[14] S. Ivorra, J. García-Barba, M. Mateo, C. Pérez-Carramiñana, A. Maciá, Partial collapse of a ventilated stone façade: Diagnosis and analysis of the anchorage system, Engineering Failure Analysis, Volume 31, (2013), pp.290-301.

DOI: 10.1016/j.engfailanal.2013.01.045

Google Scholar

[15] A Abdelbaki, Z Zrikem, F Haghighat, Identification of empirical transfer function coefficients for a hollow tile based on detailed models of coupled heat transfers, Building and Environment, Volume 36, Issue 2, 1 (2001), pp.139-148.

DOI: 10.1016/s0360-1323(99)00061-x

Google Scholar

[16] K.C.K. Vijaykumar, P.S.S. Srinivasan, S. Dhandapani, A performance of hollow clay tile (HCT) laid reinforced cement concrete (RCC) roof for tropical summer climates, Energy and Buildings, Volume 39, Issue 8, (2007), pp.886-892.

DOI: 10.1016/j.enbuild.2006.05.009

Google Scholar

[17] J.E. Beavers, R.M. Bennett and R.D. Flanagant, Research on infilled hollow clay tile walls, In Urban Disaster Mitigation: The Role of Engineering and Technology, edited by F.Y. Cheng and M. -S. Sheu, Pergamon, Oxford, (1995), pp.97-108.

DOI: 10.1016/b978-008041920-6/50013-0

Google Scholar

[18] A. Mezquita, J. Boix, E. Monfort, G. Mallol, Energy saving in ceramic tile kilns: Cooling gas heat recovery, Applied Thermal Engineering, Volume 65, (2014), pp.102-110.

DOI: 10.1016/j.applthermaleng.2014.01.002

Google Scholar

[19] U.V. Denisova , M.M. Kosuhin, E.C. Chernositova, Otsenka stabilьnosti kachestva kamney betonnyih stenovyih, Belgorodskiy gosudarstvennyiy tehnologicheskiy universitet im. V.G. Shuhova, (2010), pp.62-65.

Google Scholar

[20] Izotov, Igor N., Kuznetsov, Nikolay P., Melkinov, Boris E., Mityukov, Arkadiy G., Musienko, Andrey Yu. New variants of the multisurface theory of plasticity. Comparison with the experimental data /Proceedings of SPIE - The International Society for Optical Engineering, 2000, 4064, pp.362-367.

DOI: 10.1117/12.375456

Google Scholar

[21] Vatin N.I., Gorshkov A.S., Glumov A.V., Vliyanie fiziko-tehnicheskih I geometricheskih HARAKTERISTIK shtukaturnyih pokryitiy NA vlazhnostnyiy rezhim odnorodnyih sten iz gazobetonnyih blokov [Influence of physics and technology and geometrical characteristics of plaster coverings on the moist mode of uniform walls from gas-concrete blocks]. Inzhenerno-stroitelnyiy zhurnal. (2011).

Google Scholar

[22] Parashenko N.A., Gorshkov A.C., Vatin N.I. Chastichno-rebristyie sborno-monolitnyie perekryitiya s yacheistobetonnyimi blokami [Partial and ridge combined and monolithic overlappings with yacheistobetonny blocks]. Inzhenerno-stroitelnyiy zhurnal. 2011. № 6. pp.50-55.

Google Scholar

[23] Sprince A. A , Fischer G. B , Pakrastinsh L. A , Korjakins A.A. Crack propagation in concrete with silica particles. Advanced Materials Research, 842, (2014) pp.470-476.

DOI: 10.4028/www.scientific.net/amr.842.470

Google Scholar

[24] Sprince A.A., Korjakins A.A., Pakrastinsh L.A. Time-dependent behavior of high performance fiber-reinforced concrete. Advanced Materials Research, 705, (2013) pp.75-80.

DOI: 10.4028/www.scientific.net/amr.705.75

Google Scholar