Prospects of Use and Impact of Nanoparticles on the Properties of High-Strength Concrete

Article Preview

Abstract:

The basic properties of concrete can dramatically improve due to the unique structure of the nanosized particles. Namely, strength, frost resistance, fire resistance, corrosion resistance are increased, density and permeability are reduced; plasticity and water absorption are regulated. Despite of the huge number of advantages of nanomodified concrete, analysis of the use of nanoparticles shows that they are used quite seldom, as it requires a large cash outlay. It is not always profitable to use such additives. This article discusses some additives: magnesium nanoshpinel, microspheres, rice hull ash and metakaolin, astralenes, ferric hydroxide sol, carbon nanotubes, silica fume, nanosilica, MB-01, combined modifiers, based on iron hydroxide sol and silica sol. As well in this article sol-gel method as an additive in concrete is considered. The analysis shows that the use of nanosized particles can reduce a large amount of cement. As an addition, savings of the use are seen in reducing the cost of construction due to the low density with high strength. Accurate material consumption and maximum use of advantages of nanomodified concrete provide great prospects of implementation of this material in construction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1416-1424

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ponomarev A.N. Vysokokachestvennye betony. Analiz vozmozhnosteĭ i praktika ispol'zovanija metodov nanotehnologii (2009) Magazine of Civil Engineering, 8(6), pp.25-33.

Google Scholar

[2] Kovaleva A. Yu., Belyayeva Zh. V., Aubakirova I. U, Staroverov V. D. Opyt promyshlennogo primeneniya nanomodifitsirovannykh betonnykh smesey (2008) Ves beton.

Google Scholar

[3] Pukharenko Yu. V., Aubakirova I. U., Staroverov V. D., Gyunner T. V., Kudobayev M. K. Korrozionnostoykiye nanomodifitsirovannyye tsementnyye (2010) Tekhnologii betonov, 7(8), pp.24-27.

Google Scholar

[4] Sprince, A., Pakrastinsh, L., Korjakins A. Experimental study on creep of new concrete mixtures (2011) Civil Engineering '11 - 3rd International Scientific Conference, Proceedings, Vol. 3, pp.20-26.

Google Scholar

[5] Kishinevskaya Ye.V., Vatin N.I., Kuznetsov V.D. Perspektivy primeneniya nanobetona v monolitnykh bolsheproletnykh rebrestykh perekrytiyakh s postnapryazheniyem (2009) Magazine of Civil Engineering, 2, p.54–58.

Google Scholar

[6] EN 1992 Eurocode 2. Design of concrete structures.

Google Scholar

[7] Kolb D.A., Chumadova L.I. Perspektivy nanomodifikatsii (2011) Materialy NPKMU (XLI week of science of SPbGPU) Part 1, pp.14-16.

Google Scholar

[8] Vauchskiy M.N. Nanobeton: mify i realnost (2007) Stroy PROFIl, № 8, p.48 – 50.

Google Scholar

[9] Barabanshchikov Yu.G. Vasilyev. A.S. Effektivnost dobavok – uskoriteley skhvatyvaniya i tverdeniya dlya torkret-betona (2012) Magazine of Civil Engineering, 8(34), p.72–78.

Google Scholar

[10] Ta Van Fan, Nesvetev G.V., Vliyaniye beloy sazhi i metakaolina na prochnost i deformatsionnyye svoystva tsementnogo kamnya (2012) Inzhenernyy vestnik Dona, № 4, Part 1.

Google Scholar

[11] Nesvetayev G.V., Kardumyan G.S., Ta Van Fan, Khomich L.A., Blyagoz A.M. Kontraktsiya portlandtsementra v prisutstvii superplastifikatorov i mineralnykh (2012) Novyye tekhnologii, №4, pp.125-128.

Google Scholar

[12] Nesvetayev G.V., Kardumyan G.S., Ta Van Fan, Khomich L.A., Blyagoz A.M. O vliyanii superplastifikatorov i mineralnykh dobavok na velichinu nachalnogo modulya uprugosti tsementnogo kamnya i betona (2012) Novyye tekhnologii, № 4, pp.118-121.

Google Scholar

[13] Nesvetayev G.V., Kardumyan G.S., Ta Van Fan, Khomich L.A., Blyagoz A.M. O vliyanii superplastifikatorov i mineralnykh dobavok na poristost tsementnogo (2012) Novyye tekhnologii, № 4, pp.122-125.

Google Scholar

[14] Ta Van Fan. Samouplotnyayushchiyesya vysokoprochnyye betony s kompensirovannoy usadkoy (2012) Materialy MNPK «Stroitelstvo 2012» RGSU, pp.124-126.

Google Scholar

[15] Zaporozhec I.D., Parijskij A.A., Okorokov S.D., Chumadova L.I. K voprosu o temperaturnoj funkcii teplovydeleniya betona (1977) Beton i zhelezobeton, №6.

Google Scholar

[16] Chumadov L.N., Chumadova L.I. Sovershenstvovanie metodov teplovoj obrabotki zhelezobetonny'x izdelij (1973) Stroitel'stvo i arxitektura Leningrada, №2.

Google Scholar

[17] Matveyeva Ye. G. Povysheniye effektivnosti betona dobavkoy nanodispersnogo kremnezema (2011) M.: Belgorod. 2011. 21 p.

Google Scholar

[18] Sprince, A. , Fischer, G, , Pakrastinsh, L., Korjakins, A. Crack propagation in concrete with silica particles (2012) Advanced Materials Research, Vol. 842, pp.470-476.

DOI: 10.4028/www.scientific.net/amr.842.470

Google Scholar

[19] Sprince, A. , Korjakins, A. , Pakrastinsh, L. Time-dependent behavior of high performance fiber-reinforced concrete (2013) Advanced Materials Research, Vol. 705, pp.75-80.

DOI: 10.4028/www.scientific.net/amr.705.75

Google Scholar

[20] Kapriyelov S.S. Batrakov V.G., Sheynfeld A.V. Modifitsirovannyye betony novogo pokoleniya: realnost i perspektiva (1999) Beton i zhelezobeton, № 6, p.6–10.

Google Scholar

[21] Davaasenge S.S., Burenina O.N. Fiziko-mekhanicheskiye svoystva nanomodifitsirovannykh «toshchikh» betonov dlya ustroystva osnovaniy dorozhnoy odezhdy (2011) Scientific journal of KubGAU, 10(074), p.732 – 743.

Google Scholar

[22] Inozemtsev A. S, Korolev Ye.V. Osnovy razrabotki nanomodifitsirovannykh vysokoprochnykh legkikh betonov (2013) Nanotekhnologii v stroitelstve, Vol. 23, №1.

Google Scholar

[23] Yu, M.F.; Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load (2000) Science 2000, Vol. 287, p.637–640.

DOI: 10.1126/science.287.5453.637

Google Scholar

[24] Salvetat, J.P. Bonard, J. -M., Thomson, N.H.; Kulik, A.J., Forró, L., Benoit, W., Zuppiroli, L. Mechanical properties of carbon nanotubes (1999) Applied Physics A: Materials Science and Processing, Vol. 69, p.255–260.

DOI: 10.1007/s003390050999

Google Scholar

[25] Walters, D.A., Ericson, L.M., Casavant, M.J., Liu, J., Colbert, D.T., Smith, K.A., Smalley R.E. Elastic strain of freely suspended single-wall carbon nanotube ropes (1999) Applied Physics Letters, Vol. 74, p.3803–3805.

DOI: 10.1063/1.124185

Google Scholar

[26] Sinnott, S.B., Andrews, R. Carbon nanotubes: Synthesis, properties and applications (2001) Critical Reviews in Solid State and Materials Sciences, Vol. 26, p.145–249.

DOI: 10.1080/20014091104189

Google Scholar

[27] Berber, S., Kwon, Y.K., Tomanek, D. Unusually high thermal conductivity of carbon nanotubes (2000) Physical Review Letters, Vol. 84, p.4613–4616.

DOI: 10.1103/physrevlett.84.4613

Google Scholar

[28] Brozdnichenko A.N., Ponomarev A.N., Pronin V.P., Rybalko V.V. Magnetic properties of multiwall carbon nanotubes and astralenes in strong electric (2007).

DOI: 10.1134/s1027451007010223

Google Scholar

[29] Ponomarev, A.N., Shames, A.I., Katz, E.A., Panich, A.M., Mogilyansky, D., Mogilko, E., Grinblat, J., Belousov, V.P. Structural and magnetic resonance study of astralen nanoparticles (2009) Diamond and Related Materials, №18 (2-3),  pp.505-510.

DOI: 10.1016/j.diamond.2008.10.056

Google Scholar

[30] Ponomarev, A.N., Egorushkin, V.E., Melnikova, N.V. The role of structural inhomogeneities in the temperature behavior of the thermopower in metallized nanotubes with impurities (March 2009) Russian Physics Journal, Vol. 52, Issue 3, pp.252-264.

DOI: 10.1007/s11182-009-9223-6

Google Scholar

[31] Ponomarev, A.N., Egorushkin, V.E., Melnikova, N.V., , Reshetnyak, A.A. Anomalous thermal conductivity in multiwalled carbon nanotubes with impurities and short-range order  (2010).

DOI: 10.1088/1742-6596/248/1/012005

Google Scholar

[32] Ponomarev, A.N., Shames, A.I., Felner, I., Osipov, V. Yu., Katz, E.A. d, Mogilko, E., Grinblat, J., Panich, A.M., Belousov, V.P., Belousova, I.M. Closed π-electron network in large polyhedral multi-shell carbon nanoparticles (February 2011) Nanoscience and Nanotechnology Letters, Vol. 3, Issue 1, February 2011, pp.41-48.

DOI: 10.1166/nnl.2011.1117

Google Scholar

[33] Kiski S.S., Ageev I.V., Ponomarev A.N., Kozeev A.A., Judovich M.E. Issledovanie vozmozhnosti modifikacii karbosilatnyh plastifikatorov v sostave modificirovannyh melkozernistyh betonnyh smesej (2012) Magazine of Civil Engineering, 34(8) pp.42-46.

Google Scholar

[34] Vatin N.I., Petrosov D.V., Kalachev A.I., Lakhtinen P. Primeneniye zol i zoloshlakovykh otkhodov v stroitelstve (2011) Magazine of Civil Engineering, 4(22), p.16–21.

Google Scholar

[35] Yudovich M. Ye. O nekotorykh osobennostyakh nanotekhnologii v plastifikaii (2008) Magazine of Civil Engineering, №1, pp.30-32.

Google Scholar

[36] Photographer: JSC «Institut «Stroyproyekt.

Google Scholar

[37] Information on: http: /saint-petersburg. ru/m/307416/ 20. 11. (2011).

Google Scholar

[38] Frolov A.V., Kononov Yu.I. Ispolzovaniye nanobetona v stroitelstve unikalnykh zhelezobetonnykh konstruktsiy i sooruzheniy (2012) Materialy NPKMU (XLI week of science of SPbGPU) Part 1, pp.420-421.

Google Scholar

[39] Pieter van Broekhuizen, Fleur van Broekhuizen, Ralf Cornelissen, Lucas Reijnders. Use of nanomaterials in the European construction industry and some occupational health aspects thereof (February 2011) Journal of Nanoparticle Research, Vol. 13, Issue 2, pp.447-462.

DOI: 10.1007/s11051-010-0195-9

Google Scholar

[40] Cristina Buzea, Ivan I. Pacheco, Kevin Robbie. Nanomaterials and nanoparticles: Sources and toxicity (December 2007) Biointerphases, Vol. 2, Issue 4, pp. MR17-MR71.

DOI: 10.1116/1.2815690

Google Scholar

[41] Harri Alenius, Julia Catalán, Hanna Lindberg, Hannu Norppa, Jaana Palomäki, Kai Savolainen. Chapter 3 - Nanomaterials and Human Health. (2014) Handbook of Nanosafety Pp. 59-133. @ Academic Press. (2014).

DOI: 10.1016/b978-0-12-416604-2.00003-2

Google Scholar

[42] Pietroiusti A., Magrini A., Campagnolo L. 2 - Mechanisms of nanomaterial toxicity (2014) Health and Environmental Safety of Nanomaterials, pp.28-43. © Woodhead Publishing Limited. (2014).

DOI: 10.1533/9780857096678.1.28

Google Scholar

[43] Jonathan D. Judy, Paul M. Bertsch. Chapter One - Bioavailability, Toxicity, and Fate of Manufactured Nanomaterials in Terrestrial Ecosystems (2014) Advances in Agronomy, Vol. 123, pp.1-64.

DOI: 10.1016/b978-0-12-420225-2.00001-7

Google Scholar