[1]
M. Bayraktar, R. Guclu and M. Metin, MODELLING OF AIR SPRINGS IN A RAIL VEHICLE", 13th International Research/Expert Conference "Trends in the Development of Machinery and Associated Technology, Hammamet, Tunisia, 2009, pp.829-832.
Google Scholar
[2]
C. Pellegrini , F. Gherardi , D. Spinelli , G. Saporito & M. Romani (2006).
Google Scholar
[3]
H. sayyaadi* and N. Shokouhi, Effects of air reservoir volume and connecting pipes' length and diameter on the air spring behavior in rail–vehicles, Iranian Journal of Science & Technology, Transaction B: Engineering, Vol. 34, No. B5, 2010, pp.499-508.
Google Scholar
[4]
V. Gavriloski and J. Jovanova, Dynamic Behavior of an Air spring elements.
Google Scholar
[5]
A. Alonso, J. G. Giménez, J. Nieto and J. Vinolas, Air suspension characterisation and effectiveness of a variable area orifice, Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 48: sup1, 2010, pp.271-286.
DOI: 10.1080/00423111003731258
Google Scholar
[6]
W N. Bao p Chen, y q. Zhang and y s. Zhao Fuzzy adaptive sliding mode controller for an air spring active suspension, International Journal of Automotive Technology, Vol. 13, No. 7, p.1057−1065 (2012).
DOI: 10.1007/s12239-012-0108-2
Google Scholar
[7]
Wei bo Yu ; Lai Wei ; Baimei Pang and Nan Li, Application of self-adjustable fuzzy control algorithm in the air suspension of the vehicle, International Conference on Mechatronics and Automation 2009, pp.676-680.
DOI: 10.1109/icma.2009.5246377
Google Scholar
[8]
Tanovic, O. ; Bosnia-Herzegovina ; Huseinbegovic, S., Hybrid fuzzy-neural network structure for vehicle seat vibration isolation, IEEE International Conference on Control and Automation, 2009, pp.
DOI: 10.1109/icca.2009.5410379
Google Scholar
[9]
C. Pellegrini , F. Gherardi , D. Spinelli , G. Saporito & M. Romani (2006).
Google Scholar
[10]
G. Quaglia, M. Scopesi & W. Franco, A comparison between two pneumatic suspension architectures, International Journal of Vehicle Mechanics and Mobility, 50: 4, 509-526.
DOI: 10.1080/00423114.2011.602420
Google Scholar
[11]
GoegoesDwi Nusantoro1, GigihPriyandoko, PID State Feedback Controller of a Quarter Car Active Suspension System, J. Basic. Appl. Sci. Res., 1(11)2304-2309, (2011).
Google Scholar
[12]
Presthus, M. Derivation of air spring model parameters for train simulation. Master's thesis, Department of Applied Physics and Mechanical Engineering, Lulea° University of Technology, Lulea°, Sweden, (2002).
Google Scholar
[13]
Gavriloski V, Jovanova J, Dynamic behaviour of an air spring element.
Google Scholar
[14]
G. Quaglia and M. Sorli, Air suspension dimensionless analysis and design procedure, Veh. Syst. Dyn 35, p.443–475 (2001).
DOI: 10.1076/vesd.35.6.443.2040
Google Scholar
[15]
F. Chang and Z. H. Lu, Air suspension performance analysis using nonlinear geometrical parameters model, SAE Technical Paper Series 01-4270, (2007).
DOI: 10.4271/2007-01-4270
Google Scholar
[16]
G. D. Nusantoro1, G. Priyandoko, PID State Feedback Controller of a Quarter Car Active Suspension System, J. Basic. Appl. Sci. Res., 1(11)2304-2309, (2011).
Google Scholar
[17]
M. M. M. Salem and Ayman A. Aly, Fuzzy Control of a Quarter-Car Suspension System, World Academy of Science, Engineering and Technology, 53, (2009).
Google Scholar