[1]
S. A. Shabalovskaya, D. Siegismund, E. Heurich, M. Rettenmayr, Evaluation of wettability and surface energy of native Nitinol surfaces in relation to hemocompatibility, Materials Science and Engineering C. 33 (2013)127-132.
DOI: 10.1016/j.msec.2012.08.018
Google Scholar
[2]
N. Nayan, V. Buravalla, U. Ramamurty, Effect of mechanical cycling on the stress–strain response of a martensitic Nitinol shape memory alloy, Materials Science and Engineering A. 525(2009)60–67.
DOI: 10.1016/j.msea.2009.07.038
Google Scholar
[3]
R. R. Adharapurapu, F. Jiang, J. F. Bingert , K. S. Vecchio, Influence of cold work and texture on the high-strain-rate response of Nitinol, Materials Science and Engineering A. 527(2010)5255–5267.
DOI: 10.1016/j.msea.2010.04.076
Google Scholar
[4]
H. Sadiq, M. B. Wong, R. Al-Mahaidi , X. L. Zhao, The effects of heat treatment on the recovery stresses of shape memory alloys, Smart Mater. Struct. 19 (2010) 7pp.
DOI: 10.1088/0964-1726/19/3/035021
Google Scholar
[5]
M. Schlun, A. Zipse, G. Dreher, N. Rebelo, Effects of Cyclic Loading on the Uniaxial Behavior of Nitinol , Journal of Materials Engineering and Performance . 20 (2011) 684-687.
DOI: 10.1007/s11665-010-9790-2
Google Scholar
[6]
P. R. Halani, I. Kaya , Y. C. Shin, H. E. Karaca, Phase transformation characteristics and mechanical characterization of nitinol synthesized by laser direct deposition, Materials Science &Engineering A. 559 (2013) 836–843.
DOI: 10.1016/j.msea.2012.09.031
Google Scholar
[7]
A.R. Pelton, J. Dicello, S. Miyazaki, Optimisation of processing and properties of medical grade Nitinol wire, Min Invas Ther & Allied Technol. 9(2000)107–118.
DOI: 10.3109/13645700009063057
Google Scholar