[1]
Barnea, D. A unified model for predicting flow pattern transitions for the whole range of pipe inclinations (1987), Int. J. Multiphase Flow 13, pp.1-12.
DOI: 10.1016/0301-9322(87)90002-4
Google Scholar
[2]
Chisholm, D. A theoretical basis for the Lockhart-Martinelli correlation for two phase flow (1967), Int.J. Heat Mass Transfer 10, pp.1767-1778.
DOI: 10.1016/0017-9310(67)90047-6
Google Scholar
[3]
Hamidi, S., Kermani, M.J. Numerical solutions of compressible two-phase moist-air flow with shocks (2013), European Journal of Mechanics B/Fluids 42, p.20–29.
DOI: 10.1016/j.euromechflu.2013.04.002
Google Scholar
[4]
Michele, V., Dietmar C. H. Liquid flow and phase holdup-measurement and CFD modeling for two-and three-phase bubble columns (2002), J. Chemical Engineering Science 57, 1899-(1908).
DOI: 10.1016/s0009-2509(02)00051-9
Google Scholar
[5]
Minzer, U., Taitel, D., Barnea, D. Flow rate distribution in evaporating parallel pipes-modeling and experimental (2006). J. Chemical Engineering Science 61, 7249-7259.
DOI: 10.1016/j.ces.2006.08.026
Google Scholar
[6]
Natan, S., Barnea, D., and Taitel, Y. Direct steam generation in parallel pipes (2003). Int. J. Multiphase Flow 29, 1669-1683.
DOI: 10.1016/j.ijmultiphaseflow.2003.07.002
Google Scholar
[7]
Serizawa. A., Feng. Z., Kawara, Z., Two-phase flow in micro channels. (2002) J. Experimental Thermal and Fluid Science 26, Issues 6–7, 703–714.
DOI: 10.1016/s0894-1777(02)00175-9
Google Scholar
[8]
Subhashini, G., Nigam, K.D.P., CFD modeling of flow profiles and interfacial phenomena in two-phase flow in pipes, (2006) J. Chemical Engineering and Processing 45, 1, 55–65.
DOI: 10.1016/j.cep.2005.05.006
Google Scholar
[9]
Taitel, Y. and Barnea, D., Transient solution for flow of evaporating fluid in parallel pipes using analysis based on flow patterns. (2011) Int. J. Multiphase Flow 37, 469-474.
DOI: 10.1016/j.ijmultiphaseflow.2011.01.002
Google Scholar
[10]
Thom, J.R.S., 1964, Prediction of pressure drop during forced circulation boiling of water. Int. J. Heat Mass Transfer 7, 709-724.
DOI: 10.1016/0017-9310(64)90002-x
Google Scholar
[11]
Triplett, K.A., Ghiaasiaan, S.M., Abdel-Khalik, S.I., Sadowski, D.L., Gas-liquid two-phase flow in micro channels Part I: two-phase flow patterns, (1999) Int.J. Multiphase Flow 25, 3, 377-394.
DOI: 10.1016/s0301-9322(98)00054-8
Google Scholar
[12]
Triplett, K.A., Ghiaasiaan, S.M., Abdel-Khalik, S.I., LeMouel, A. and McCord, B.N., 1999, Gas-liquid two-phase flow in micro channels Part II: void fraction and pressure drop. Int. J. Multiphase Flow 25, 395-410.
DOI: 10.1016/s0301-9322(98)00055-x
Google Scholar
[13]
Vinesh H.G., Datta, D., Sharma, A., 2013. Analytical and numerical study for two-phase stratified-flow in a plane channel subjected to different thermal boundary conditions, Int. J. Thermal sciences 71, 88-102.
DOI: 10.1016/j.ijthermalsci.2013.03.022
Google Scholar
[14]
Barnea, D., Taitel, Y. Transient solution for the flow of evaporating fluid in parallel pipes using analysis based on flow patter (2011), Int. J. Multiphase flow 37, pp.469-474.
DOI: 10.1016/j.ijmultiphaseflow.2011.01.002
Google Scholar