[1]
P. Sacher: The Engineering design of engine/airframe integration for the Sanger fully reusable space transportation system, Aerospace Consulting, RTO-EN-185.
Google Scholar
[2]
P. Leyland, H. Olivier: ELAC A case study for high speed transportation, Proc. 4th European Symp. Aerothermodynamics for space applications, 15-18 Oct, Italy, ESA SP-487 (2001).
Google Scholar
[3]
D.S. Butler: The numerical solution of hyperbolic systems of partial differential equations in three independent variables. Proc Roy Soc 225, 232-252. (1960).
DOI: 10.1098/rspa.1960.0065
Google Scholar
[4]
L.C. Squire: Measured pressure distributions and shock shapes on a simple delta wing. Aeronaut Quart 32, 188-198. (1981).
DOI: 10.1017/s0001925900009136
Google Scholar
[5]
G.I. Maikopar: Separated flows at the leeward side of a triangular wing and a body of revolution in supersonic flow. Uch Zapiski TsAGI 13, 22-33. (1982).
Google Scholar
[6]
D.S. Miller, R.M. Wood: Leeside flows over delta wings at supersonic speeds. J Aircraft 2, 680-686. (1984).
DOI: 10.2514/3.45014
Google Scholar
[7]
K.Y. Narayan, S. N. Seshadri: Types of flow on the leeside of delta wings. Progress in Aerospace Sciences 33, 167-257. (1997).
DOI: 10.1016/s0376-0421(96)00004-8
Google Scholar
[8]
A. Henze, W. Limberg, A. M. Kharitonov, M. D. Brodetsky, E. Crause: An experimental Investigation of ELAC 1 configuration at supersonic speeds, Experiments in Fluids 26(1999) 423-436, Springer-Verlag. (1999).
DOI: 10.1007/s003480050306
Google Scholar
[9]
M. Moelyadi: Stage Separation Aerodynamics of Future Space Transport Systems, Ph. D thesis, TUM, 2006. Germany. (2006).
Google Scholar
[10]
L. A. Schiavetta, O. J. Boelens, W. Fritz: Analysis of Transonic Flow on a Slender Delta Wing Using CFD, AIAA Paper 2006-3171. (2003).
DOI: 10.2514/6.2006-3171
Google Scholar
[11]
N. Lang: Investigation of the Supersonic Flow Field around a delta wing using Particle-Image-Velocimetry, RWTH, Aachen, Germany. (1998).
Google Scholar
[12]
D. Peake, M. Tobak: Three-dimensional interactions and vortical flows with emphasis on high speed, AGARD-AG-252. (1980).
Google Scholar
[13]
I. Gursul, M. Allen: DELTA WING AERODYNAMICS – Requirements from CFD & experiments, Integrating CFD and Experiments, Glasgow, UK. (2003).
Google Scholar
[14]
V. Engler, D. Coors and D. Jacob: AIAA 8th International Space planes and hypersonic systems and technologies conference, April 27-30, Virginia, USA. (1998. ).
DOI: 10.2514/6.1998-1553
Google Scholar
[15]
A. Stanbrook, L.S. Squire: Possible types of flow at swept leading edges. Aeronaut Quart 15, 72-82. (1964).
DOI: 10.1017/s0001925900003024
Google Scholar
[16]
S. Yoon, A. Jameson: Lower-Upper Symmetric-Gauss-Seidal Method for the Euler and Navier-Stokes Equations, AIAA Journal, Vol. 26, No. 9. (1998).
DOI: 10.2514/3.10007
Google Scholar
[17]
A. Mowat: Modelling of Non-linear Aero elastic Systems using a strongly coupled Fluid-Structure-Interaction, M. Sc Thesis, University of Pretoria, South Africa (2011).
Google Scholar
[18]
Spalart, P. R. and Allmaras, S. R: A One-Equation Turbulence Model for Aerodynamic Flows, AIAA Paper 92-0439 (1992).
DOI: 10.2514/6.1992-439
Google Scholar
[19]
Edwards, J. R. and Chandra, S: Comparison of Eddy Viscosity-Transport Turbulence Models for Three-Dimensional, Shock-Separated Flow fields, AIAA Journal, Vol. 34, No. 4. (1996).
DOI: 10.2514/3.13137
Google Scholar