[1]
H.A. Kishawya, M. Dumitrescub, E.G. Ng and M.A. Elbestawi, Effect of coolant strategy on tool performance, chip morphology and surface quality during high-speed machining of A356 aluminum alloy, Int. J. Mach. Tools Mf. 45 (2005) 219-227.
DOI: 10.1016/j.ijmachtools.2004.07.003
Google Scholar
[2]
R. B. Dasilva, A.R. Machado, E.O. Ezugwu, J. Bonney and W. F. Sales, Tool life and wear mechanisms in high speed machining of Ti–6Al–4V alloy with PCD tools under various coolant pressures, J. Mater. Process. Technol. 213 (2013) 1459-1464.
DOI: 10.1016/j.jmatprotec.2013.03.008
Google Scholar
[3]
U. Heisel and M. Gringel, Machine Tool Design Requirements for High-Speed Machining, Ann. CIRP, Mfg Techno. 45 (1996) 389-392.
DOI: 10.1016/s0007-8506(07)63087-x
Google Scholar
[4]
B. Bossmanns and J. F. Tu, Conceptual Design of Machine Tool Interfaces for HighSpeed Machining, J. Manuf. Processes. 41 (2002) 16-27.
DOI: 10.1016/s1526-6125(02)70130-8
Google Scholar
[5]
T.M.E.I. Hossainny, Enhancement of surface quality using a newly developed technique in turning operations, Proc. IMechE Part B: J. Engineering Manufacture, 224 (2009) 1389-1397.
DOI: 10.1243/09544054jem1735
Google Scholar
[6]
G. Urbikain, L.N.L. D Lacalle, F.J. Campa, A. Fernandez and A. Elias, Stability prediction in straight turning of a flexible workpiece by collocation method, Int. J. Mach. Tools Mf. 54-55 (2012) 73-81.
DOI: 10.1016/j.ijmachtools.2011.11.008
Google Scholar
[7]
L. Kops, M. Gould and M. Mirach, Improved Analysis of the Workpiece Accuracy in Turning, Based on the Emerging Diameter, Trans. ASME J. Engng for Ind. 115 (1993) 253-257.
DOI: 10.1115/1.2901657
Google Scholar
[8]
A.V. Phan, L. Baron, J.R.R. Mayer and G. Cloutier, Finite element and experimental studies of diametral errors in cantilever bar turning, Appl. Math. Modelling. 27 (2003) 221-232.
DOI: 10.1016/s0307-904x(02)00122-1
Google Scholar
[9]
E. M. McCollogh, Economics of Multitool Lathe Operations Trans. ASME J. Engng for Ind. (1963) 402-404.
Google Scholar
[10]
A. Zompi, R. Levi and G. L. Ravignan, Multi-Tool Machining Analysis Part 1 Tool Failure Patterns and Implications, Trans. ASME J. Engng for Ind. 101 (1979) 230-236.
DOI: 10.1115/1.3439500
Google Scholar
[11]
G.L. Ravignani, A. Zompi and R. Levi, Multi-Tool Machining Analysis Part 2 Economic Evaluation in view of Tool Life Scatter, Trans. ASME J. Engng for Ind. 101 (1979) 237-240.
DOI: 10.1115/1.3439501
Google Scholar
[12]
K. Sheikh, L. A. Kendall, and S. M. Pandit, Probabilistic Optimization of Multitool Machining Operations", ASME Journal of Engineering for Industry Trans. ASME J. Engng for Ind. 102 (1980) 239-246.
DOI: 10.1115/1.3183859
Google Scholar
[13]
N. K. Jha, Optimizing the Number of Tools and Cutting Parameters in Multi-tool Turning for Multiple Objective through Geometric Programming, Appl. Math. Modelling. 10 (1986) 162-170.
DOI: 10.1016/0307-904x(86)90041-7
Google Scholar
[14]
L. Tang, R. G. Landers, and S. N. Balakrishnan, Parallel Turning Process Parameter Optimization Based on Novel Heuristic Approach, ASME, J. of Manu Sc and Engng. 130 (2008) 031002-1-031002-12.
DOI: 10.1115/1.2823077
Google Scholar
[15]
M. Yatin, V. Ramanuj, D. K. Sarma, and S. Senthilvelan, Design of attachment tool for Multi-tool turning, International conference on Processing and Fabrication of Advance Materials (2012) 195-204.
Google Scholar
[16]
Y. Matsumoto, Workpiece temperature rise during the cutting of AISI 4340 steel, Wear 116 (1987) 309-317.
DOI: 10.1016/0043-1648(87)90179-7
Google Scholar